半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于快速独立分量分析的谐波/间谐波频谱分离算法
作者:
作者单位:

四川大学电气工程学院,四川省成都市610065

摘要:

在非同步采样条件下,若电网采样信号中谐波和间谐波相邻,会出现严重的频谱干涉问题,且无法识别出信号中实际频率成分。针对以上问题,提出了一种基于快速独立分量分析(FastICA)的频谱分离算法测量谐波和间谐波参数。首先构建了多频率成分模型,将频谱中的谱线表示为多个频率成分分量的叠加,然后利用FastICA算法和最小二乘法得到频率成分参数,最终实现了对相邻多频率成分的测量。仿真结果表明,该算法可以在需求谱线数较少的情况下准确识别频率成分并保持较好的测量精度,且具有一定的抗噪能力。

关键词:

基金项目:

国家自然科学基金资助项目(51477105)。

通信作者:

马晓阳(1991—),男,通信作者,博士,讲师,主要研究方向:电能质量。E-mail:mxy_scu@163.com

作者简介:

杜文龙(1995—),男,硕士研究生,主要研究方向:间谐波检测。E-mail:472530725@qq.com
杨洪耕(1949—),男,教授,博士生导师,主要研究方向:电能质量与谐波、电力市场等。E-mail:pqlab99@163.com


Harmonic / Interharmonic Spectrum Separation Algorithm Based on Fast Independent Component Analysis
Author:
Affiliation:

School of Electrical Engineering, Sichuan University, Chengdu610065, China

Abstract:

Under the condition of asynchronous sampling, if the harmonics and interharmonics in the sampling signals of power grid are adjacent, serious spectrum interference will occur. The actual frequency components of the signals cannot be identified. Therefore, a spectrum separation algorithm based on fast independent component analysis (FastICA) is proposed to measure harmonic and interharmonic parameters. Firstly, the model of multi-frequency components is constructed. Spectral lines in the spectrum are represented as the superposition of multiple frequency components. Secondly, frequency component parameters are obtained by using FastICA and least squares method. Finally, the measurement of adjacent multi-frequency components is realized. The simulation results show that the algorithm can accurately identify the frequency components with a small number of required spectral lines, and has good measurement accuracy and certain anti-noise ability.

Keywords:

Foundation:
This work is supported by National Natural Science Foundation of China (No. 51477105).
引用本文
[1]杜文龙,杨洪耕,马晓阳.基于快速独立分量分析的谐波/间谐波频谱分离算法[J].电力系统自动化,2020,44(13):115-122. DOI:10.7500/AEPS20190812007.
DU Wenlong, YANG Honggeng, MA Xiaoyang. Harmonic / Interharmonic Spectrum Separation Algorithm Based on Fast Independent Component Analysis[J]. Automation of Electric Power Systems, 2020, 44(13):115-122. DOI:10.7500/AEPS20190812007.
复制
分享
历史
  • 收稿日期:2019-08-12
  • 最后修改日期:2020-01-14
  • 录用日期:
  • 在线发布日期: 2020-07-03
  • 出版日期:
相关附件