半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于无功优化的DFIG并网电力系统OSC-OPF算法
作者:
作者单位:

合肥工业大学电气与自动化工程学院,安徽省合肥市 230009

作者简介:

通讯作者:

基金项目:

国家自然科学基金资助项目(51877061)。


Oscillatory Stability Constrained Optimal Power Flow Algorithm Based on Reactive Power Optimization for DFIG Integrated Power System
Author:
Affiliation:

School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China

Fund Project:

This work is supported by National Natural Science Foundation of China (No. 51877061).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    双馈感应发电机(DFIG)与同步发电机(SG)间动态交互,影响系统阻尼振荡能力。由于系统状态矩阵由SG和DFIG参数决定,推导振荡模式对受控参数灵敏度的难度增加。针对含DFIG的电力系统,为量化无功调节对阻尼振荡的控制效果,提出阻尼比对SG无功出力灵敏度的解析表达。引入最小阻尼比约束,提出基于无功优化的振荡稳定约束最优潮流(OSC-OPF)模型。根据OSC-OPF拉格朗日乘子,提出稳定约束下网损对SG无功容量的灵敏度。仿真结果证实,所提模型有助于降低风电系统网损并改善其阻尼振荡能力。

    Abstract:

    The dynamic interaction of the synchronous generators (SGs) and doubly-fed induction generators (DFIGs) changes the oscillation damping capability of the systems. The system state matrix is decided by the parameters of the SGs and the DFIGs, adding the difficulty of deriving the sensitivity of the oscillation modes to the control parameters. For the power systems with the DFIGs, to quantify the control effect of reactive power adjustment to damp the oscillation, the analytical expression of the sensitivity of the damping ratio to the reactive output of the SGs is proposed. By introducing the constraint of the minimum damping ratio, the oscillatory stability constrained optimal power flow (OSC-OPF) model based on reactive power optimization is proposed. According to the Lagrange multiplier of the OSC-OPF, the sensitivity of the system loss to the reactive capacity of the SGs under the stability constraint is proposed. The simulation results show that the proposed model helps reduce the power loss and improve the damping capability of the wind power systems.

    表 10 Table 10
    表 5 Table 5
    表 9 Table 9
    表 2 无功容量灵敏度指标对应SG无功出力Table 2 SG reactive output with sensitivity indices of power loss to reactive capacity
    表 8 Table 8
    表 12 Table 12
    表 11 Table 11
    表 3 Table 3
    表 6 Table 6
    表 7 Table 7
    表 4 Table 4
    图1 本文算法框架和创新点Fig.1 Framework and originality of algorithm in this paper
    图2 风电系统无功优化OSC-OPF算法Fig.2 OSC-OPF algorithm based on reactive power optimization of wind power system
    图3 弱阻尼模式对SG无功出力的灵敏度Fig.3 Sensitivity of weak damped mode to reactive output of SG
    图4 灵敏度模型检验Fig.4 Validation to sensitivity model
    图5 基于有功和无功优化的OSC-OPF对比Fig.5 Comparison of OSC-OPF based on active and reactive power optimization
    图 DFIG结构Fig. Configuration of DFIG
    图 振荡模式3/4对SG无功出力灵敏度Fig. Sensitivities of oscillation mode 3/4 with respect to reactive outputs of SGs
    图 不同稳定指标下网损实际值和预测值对比Fig. Comparison of actual and predicted power losses with different stability indexes
    表 1 不同稳定指标下弱阻尼比、SG无功及Table 1 Optimization results of weak damping ratio, reactive output of SG and power loss with different stability indices
    参考文献
    相似文献
    引证文献
引用本文

李生虎,蒋以天.基于无功优化的DFIG并网电力系统OSC-OPF算法[J/OL].电力系统自动化,http://doi.org/10.7500/AEPS20190912001.
LI Shenghu,JIANG Yitian.Oscillatory Stability Constrained Optimal Power Flow Algorithm Based on Reactive Power Optimization for DFIG Integrated Power System[J/OL].Automation of Electric Power Systems,http://doi.org/10.7500/AEPS20190912001.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-12
  • 最后修改日期:2020-04-22
  • 录用日期:2020-02-14
  • 在线发布日期:
  • 出版日期: