半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于MEEMD-ARIMA模型的波浪能发电系统输出功率预测
作者:
作者单位:

1.河海大学能源与电气学院,江苏省南京市 211100;2.国网江苏省电力有限公司南京供电分公司,江苏省南京市 210019

摘要:

波浪能作为一种储量丰富的清洁能源,是未来理想的能源之一。但其具有较强的随机波动特性,因此,可靠地预测波浪能发电系统的输出功率能给复杂电网的调度带来极大的便利。文中提出基于改进的总体经验模态分解(MEEMD)-差分整合移动平均自回归(ARIMA)模型的波浪能组合预测。首先,基于海浪计算原理,计算混合浪的每小时平均波高与周期。其次,采用MEEMD对每小时平均波高与周期进行分解,得到一系列特征互异的本征模态函数(IMF)和余量,并将平均波高分解的结果与离散小波变换分解结果做对比。然后,将得到的分量分别建立ARIMA预测模型,通过叠加得到每小时平均波高与周期的预测值。最后,建立直驱式波浪能发电系统波高-功率转换模型,实例结果验证了该组合模型预测的有效性。

关键词:

基金项目:

国家自然科学基金委员会-国家电网公司智能电网联合基金资助项目(U1766203)。

通信作者:

作者简介:

吴峰(1977—),男,通信作者,博士,教授,博士生导师,主要研究方向:可再生能源发电系统的建模与控制、电力系统动态等值、基于广域测量系统的电力系统分析与控制。E-mail:wufeng@hhu.edu.cn
王飞(1995—),男,硕士研究生,主要研究方向:波浪能发电系统输出功率预测。E-mail:1354252074@qq.com
顾康慧(1991—),男,博士,主要研究方向:可再生能源建模与并网分析。E-mail:gukanghui@sina.com


Output Power Prediction of Wave Energy Generation System Based on Modified Ensemble Empirical Mode Decomposition-Autoregressive Integrated Moving Average Model
Author:
Affiliation:

1.College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China;2.Nanjing Power Supply Company of State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210019, China

Abstract:

As a kind of abundant clean energy, wave energy is one of the ideal energy in the future, but it has strong stochastic fluctuation characteristics. Reliable prediction of output power for wave energy generation systems will bring great convenience to the scheduling of complex power grids. A combination prediction model of wave energy based on modified ensemble empirical mode decomposition (MEEMD)-autoregressive integrated moving average (ARIMA) model is proposed. Firstly, based on the wave calculation principle, the hourly average height and period of the mixed wave are calculated. Secondly, the MEEMD is used to decompose the hourly average wave height and period to obtain a series of intrinsic mode functions (IMFs) with different characteristics and margins. The results of the average wave height decompositions are compared with the decomposition results of discrete wavelet transformation. Then, the obtained components are used to establish ARIMA prediction models, and the predicted values of the hourly average wave height and period are obtained by superposition. Finally,the conversion model between wave height and power of direct-drive wave energy generation system is established, and the test results show the effectiveness of the combined model prediction.

Keywords:

Foundation:
This work is supported by National Natural Science Foundation of China-State Grid Joint Fund for Smart Grid (No. U1766203).
引用本文
[1]吴峰,王飞,顾康慧,等.基于MEEMD-ARIMA模型的波浪能发电系统输出功率预测[J].电力系统自动化,2021,45(1):65-70. DOI:10.7500/AEPS20191124004.
WU Feng, WANG Fei, GU Kanghui, et al. Output Power Prediction of Wave Energy Generation System Based on Modified Ensemble Empirical Mode Decomposition-Autoregressive Integrated Moving Average Model[J]. Automation of Electric Power Systems, 2021, 45(1):65-70. DOI:10.7500/AEPS20191124004.
复制
分享
历史
  • 收稿日期:2019-11-24
  • 最后修改日期:2020-04-28
  • 录用日期:
  • 在线发布日期: 2021-01-05
  • 出版日期:
相关附件