半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
新能源电网中考虑特征选择的Bi-LSTM网络短期负荷预测
作者:
作者单位:

安徽省新能源利用与节能省级实验室(合肥工业大学),安徽省合肥市 230009

摘要:

新能源电网中负荷对各特征因素更为敏感,当面对海量特征数据时,短期负荷预测方法面临着新的挑战。针对含有高维特征数据的新能源电网,提出一种考虑特征选择的双向长短期记忆(Bi-LSTM)网络短期负荷预测方法。先将样本数据按密度进行聚类后映射到权重诱导空间中,通过定义一种数据结构,以间隔之和最大为目标函数。为实现解空间的稀疏性,将正则项添加到目标函数中,并采用梯度下降法求解特征权值。经过预试验确定特征选择阈值等超参数,从而选出所需的特征因素。最后,使用Bi-LSTM网络基于选择后的数据进行负荷预测。以中国某地区新能源电网为例,验证了该方法的有效性,结果表明其与传统方法相比,具有更好的准确性和适用性。

关键词:

基金项目:

国家重点研发计划资助项目(2016YFB0901100);国家自然科学基金区域创新发展联合基金资助项目(U19A20106)。

通信作者:

作者简介:

杨龙(1997—),男,硕士研究生,主要研究方向:人工智能在新能源电网、电力系统负荷预测中的应用。E-mail:eeyanglong@163.com
吴红斌(1972—),男,通信作者,博士,教授,主要研究方向:智能配用电、分布式发电技术。E-mail:hfwuhongbin@163.com
丁明(1956—),男,教授,博士生导师,主要研究方向:电力系统规划及其可靠性、新能源及其利用、柔性输电系统的仿真控制。E-mail:mingding56@163.com


Short-term Load Forecasting in Renewable Energy Grid Based on Bi-directional Long Short-term Memory Network Considering Feature Selection
Author:
Affiliation:

Anhui Provincial Laboratory of Renewable Energy Utilization and Energy Saving (Hefei University of Technology), Hefei 230009, China

Abstract:

Loads in the renewable energy grid is more sensitive to various feature factors, and there is a new challenge for short-term load forecasting method when facing massive feature data. Aiming at the renewable energy grid with high-dimensional feature data, a short-term load forecasting method based on the bi-directional long short-term memory (Bi-LSTM) network considering feature selection is proposed. The sample data are firstly clustered and mapped into the weight-induced space according to density. By defining a structure of interval measurement data, the maximum interval sum is used as the objective function. In order to achieve the sparsity of the solution space, a regular term is added into the objective function, and the feature weights are solved by the gradient descent algorithm. Hyper-parameters such as the feature selection threshold are determined by pre-tests, and then the required feature factors are selected. Finally, the Bi-LSTM network is used to carry out load forecasting based on the selected data. Taking the renewable energy grid in certain area of China as an example, the effectiveness of the proposed method is verified. And compared with the traditional methods, the proposed method is more accurate and applicable.

Keywords:

Foundation:
This work is supported by the National Key R&D Program of China (No. 2016YFB0901100) and the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China (No. U19A20106).
引用本文
[1]杨龙,吴红斌,丁明,等.新能源电网中考虑特征选择的Bi-LSTM网络短期负荷预测[J].电力系统自动化,2021,45(3):166-173. DOI:10.7500/AEPS20200202002.
YANG Long, WU Hongbin, DING Ming, et al. Short-term Load Forecasting in Renewable Energy Grid Based on Bi-directional Long Short-term Memory Network Considering Feature Selection[J]. Automation of Electric Power Systems, 2021, 45(3):166-173. DOI:10.7500/AEPS20200202002.
复制
分享
历史
  • 收稿日期:2020-02-02
  • 最后修改日期:2020-04-22
  • 录用日期:
  • 在线发布日期: 2021-02-03
  • 出版日期:
相关附件