半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于天气分型的短期光伏功率组合预测方法
作者:
作者单位:

中国农业大学信息与电气工程学院,北京市 100083

摘要:

由于光伏功率波动特征与天气类型紧密相关,且光伏功率短期预测存在功率波动过程预测精度低、气象因素与功率波动过程相关性弱的问题,文中提出了一种基于天气分型的短期光伏功率组合预测方法。首先,基于气象因素与光伏功率波动特征的关联性,将天气过程划分为5种类型,并基于变分模态分解算法将光伏功率分解为类晴空过程和波动过程。然后,利用Granger因果关系算法筛选出与各天气类型下光伏功率波动过程密切相关的关键气象因子。最后,建立基于天气分型的短期光伏功率组合预测模型。模型充分考虑了深度学习算法的特异性,对光伏功率类晴空过程与各天气类型下的光伏功率波动过程进行分类预测。仿真结果表明,文中所提出的短期光伏功率预测方法能够显著提升短期光伏功率预测的精度。

关键词:

基金项目:

国家重点研发计划资助项目(2018YFB0904200);国家电网公司科技项目(SGLNDKOOKJJS1800266)。

通信作者:

作者简介:

叶林(1968—),男,通信作者,教授,博士生导师,德国洪堡学者,主要研究方向:电力系统自动化、新能源发电技术。E-mail:yelin@cau.edu.cn
裴铭(1997—),男,硕士研究生,主要研究方向:电力系统运行与控制、新能源发电技术。E-mail:S20193081349@cau.edu.cn
路朋(1989—),男,博士研究生,主要研究方向:电力系统运行与控制、新能源发电技术。E-mail:lupeng@cau.edu.cn


Combination Forecasting Method of Short-term Photovoltaic Power Based on Weather Classification
Author:
Affiliation:

College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China

Abstract:

The fluctuation characteristics of the photovoltaic (PV) power are closely related to the weather types, and the short-term PV power forecasting has problems of low forecasting accuracy in the power fluctuation process and the weak correlation between meteorological factors and the power fluctuation process. This paper proposes a combination forecasting method of short-term PV power based on weather classification. Firstly, the weather process is divided into five types based on the meteorological factors and fluctuation characteristics of PV power. Based on the variational mode decomposition algorithm, the PV power is decomposed into the clear-sky-like process and the fluctuation process. Secondly, the Granger causality algorithm is used to select the key meteorological factors, which are closely related to the fluctuation process of PV power with various weather types. Finally, a combined forecasting model of short-term PV power based on weather classification is established. The model fully considers the specificity of the deep learning algorithm, separately forecasts the clear-sky-like process and the fluctuation process of PV power with various weather types. The simulation results show that the proposed short-term PV power forecasting method can significantly improve the accuracy of the short-term PV power forecasting.

Keywords:

Foundation:
This work is supported by National Key R&D Program of China (No. 2018YFB0904200) and State Grid Corporation of China (No. SGLNDKOOKJJS1800266).
引用本文
[1]叶林,裴铭,路朋,等.基于天气分型的短期光伏功率组合预测方法[J].电力系统自动化,2021,45(1):44-54. DOI:10.7500/AEPS20200613003.
YE Lin, PEI Ming, LU Peng, et al. Combination Forecasting Method of Short-term Photovoltaic Power Based on Weather Classification[J]. Automation of Electric Power Systems, 2021, 45(1):44-54. DOI:10.7500/AEPS20200613003.
复制
分享
历史
  • 收稿日期:2020-06-13
  • 最后修改日期:2020-10-10
  • 录用日期:
  • 在线发布日期: 2021-01-05
  • 出版日期:
相关附件