半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于TensorFlow神经网络的MCR-WPT系统负载与互感识别方法
作者:
作者单位:

1.重庆大学自动化学院,重庆市 400030;2.国家无线电能传输技术国际联合研究中心,重庆市 400030

摘要:

针对磁耦合谐振式无线电能传输(MCR-WPT)系统负载与互感识别精度低、速度慢等问题,提出一种基于TensorFlow神经网络的双LCC型MCR-WPT系统负载与互感识别方法。该方法基于TensorFlow深度学习框架,采用神经网络模型,将MCR-WPT系统的负载与互感识别问题等效为非线性方程的求解问题,进而转化为深度学习非线性拟合问题,并给出模型的训练方法,最后得到基于TensorFlow神经网络的MCR-WPT系统负载与互感识别模型。通过离线方式训练负载与互感识别模型,并将训练完成的识别模型导入微型控制器,只需要采集系统输入电流值和传输距离就能够实现负载与互感在线同时识别,识别速度快、精度高,有利于系统的实时控制,且成本较低、易于实现,有利于工程推广应用。

关键词:

基金项目:

国家自然科学基金资助项目(51777022);已申请国家发明专利(申请号:202010895878.1)。

通信作者:

作者简介:

苏玉刚(1962—),男,通信作者,博士,教授,博士生导师,主要研究方向:无线电能传输技术、电力电子技术、控制理论应用与自动化系统集成。E-mail:Su7558@qq.com
阳剑(1995—),男,硕士研究生,主要研究方向:无线电能传输技术。E-mail:2274573525@qq.com
戴欣(1978—),男,博士,教授,博士生导师,主要研究方向:无线电能传输系统的非线性建模及优化控制、动力学行为分析、双向电能传输及参数优化设计等。E-mail:toybear@vip.sina.com


TensorFlow Neural Network Based Load and Mutual Inductance Identification Method for Magnetic Coupling Resonant Wireless Power Transfer System
Author:
Affiliation:

1.College of Automation, Chongqing University, Chongqing 400030, China;2.China National Center for International Research on Wireless Power Transfer Technology, Chongqing 400030, China

Abstract:

Aiming at the problems of low accuracy and slow speed in identifying the load and mutual inductance of the magnetic coupling resonant wireless power transfer (MCR-WPT) system, a TensorFlow neural network based identification method for the load and mutual inductance of the double-side LCC type MCR-WPT system is proposed. This method is based on the TensorFlow deep learning framework and adopts a neural network model. The load and mutual inductance identification problem of the MCR-WPT system is equivalent to the problem of solving nonlinear equations, which is then transformed into a deep learning nonlinear fitting problem. The training method of the model is given and the TensorFlow neural network based identification model for the load and mutual inductance of MCR-WPT system is finally obtained. The identification model for the load and mutual inductance is trained offline and then the trained model is imported into the micro controller. It only needs to collect the input current value and transmission distance of the system to realize the online simultaneous identification of the load and mutual inductance. The identification speed is fast and the accuracy is high, which is conducive to the real-time control of the system. And the model is low in cost and easy to implement, which is conducive to the engineering popularization and application.

Keywords:

Foundation:
This work is supported by National Natural Science Foundation of China (No. 51777022).
引用本文
[1]苏玉刚,阳剑,戴欣,等.基于TensorFlow神经网络的MCR-WPT系统负载与互感识别方法[J].电力系统自动化,2021,45(18):162-169. DOI:10.7500/AEPS20210128004.
SU Yugang, YANG Jian, DAI Xin, et al. TensorFlow Neural Network Based Load and Mutual Inductance Identification Method for Magnetic Coupling Resonant Wireless Power Transfer System[J]. Automation of Electric Power Systems, 2021, 45(18):162-169. DOI:10.7500/AEPS20210128004.
复制
分享
历史
  • 收稿日期:2021-01-28
  • 最后修改日期:2021-04-28
  • 录用日期:
  • 在线发布日期: 2021-09-16
  • 出版日期:
相关附件