文章摘要
王焱,汪震,黄民翔,等.基于OS-ELM和Bootstrap方法的超短期风电功率预测[J].电力系统自动化,2014,38(6):14-19. DOI: 10.7500/AEPS20130830010.
WANG Yan,WANG Zhen,HUANG Minxiang, et al.Ultra-short-term Wind Power Prediction Based on OS-ELM and Bootstrap Method[J].Automation of Electric Power Systems,2014,38(6):14-19. DOI: 10.7500/AEPS20130830010.
基于OS-ELM和Bootstrap方法的超短期风电功率预测
Ultra-short-term Wind Power Prediction Based on OS-ELM and Bootstrap Method
DOI:10.7500/AEPS20130830010
关键词: 风电预测  风速修正  误差区间估计  极限学习机  Bootstrap方法
KeyWords: wind power prediction  wind speed correction  error interval estimation  extreme learning machine (ELM)  Bootstrap method
上网日期:2014-03-20
基金项目:国家高技术研究发展计划(863计划);国家自然科学基金
作者单位E-mail
王焱 浙江大学电气工程学院 浙江省杭州市 310027  
汪震 浙江大学电气工程学院 浙江省杭州市 310027 z.wang@zju.edu.cn 
黄民翔 浙江大学电气工程学院 浙江省杭州市 310027  
蔡祯祺 国网上海市电力公司 上海市 200122  
杨濛濛 浙江大学电气工程学院 浙江省杭州市 310027  
摘要:
      提出了一种基于在线序贯极限学习机(OS-ELM)的超短期风电功率预测方法。利用OS-ELM学习速度快、泛化能力强的优点,将批处理和逐次迭代相结合,不断更新训练数据和网络结构,实现了对数值天气预报风速的快速实时修正和风电机组输出功率的快速预测。随后,采用计算机自助(Bootstrap)法构造伪样本,给出了预测功率的置信区间评估。实例和研究结果表明,该预测方法与反向传播(BP)网络、支持向量机(SVM)方法相比,在计算时间上更能满足在线应用需求,而且预测精度相当,有较好的应用前景。
Abstract:
      An ultra-short-term wind power prediction method based on an online sequential extreme learning machine (OS-ELM) is proposed. Firstly, the OS-ELM is utilized to correct the predicted wind speed sequence so as to amend and improve the accuracy of predicted wind speed. Then, by combining batch processing with successive iteration, real-time prediction of wind turbine power output is accomplished with the help of the advantages of OS-ELM’s fast learning speed and strong generalization ability. Finally, a Bootstrap method is adopted to estimate the predicted intervals by resampling data. Analysis results show that, compared with the back propagation (BP) network and support vector machine (SVM) method, this prediction method can better meet the demand of online application and has good application prospects, while its forecasting accuracy is comparable to BP network and SVM method.
查看全文(Free!)   查看附录   查看/发表评论  下载PDF阅读器