Abstract:Objective To study the basic regular patterns of stress distributions inside and outside periacetabular districts during normal gait cycle of healthy adults, so as to provide clinical guidance for acetabular reconstruction of total hip arthroplasty (THA). Methods Based on CT scans of a male and a female healthy adult volunteer, The three-dimensional model including pelvis and proximal femur was reconstructed. By using an inhomogeneous material distribution scheme which was based on CT data to calculate elastic modulus and convergence analysis, each element was given a corresponding material attribute. The dynamic change of hip contact force during a normal gait cycle was used as the load condition to the model. Von Mises stress of the nodes inside and outside the model was considered as the criterion to assess the results. Results During normal gait, the stress on the hip surface of two volunteers was mainly transmitted from postersuperior part of acetabulum to auricular surface along posterolateral of iliac wing, and the maximum stress was at the district near greater sciatic. As for the superior, middle and inferior section of two volunteers' acetabulum, the stress was distributed both on cortical and cancellous bone of postersuperior part. However, in terms of acetabular anterior and posterior column, the stress distribution was mainly found on cortical bone. Conclusions According to the observed acetabular stress distribution pattern of health adults during normal gait cycle, choosing acetabular component with more suitable size and controlling the placement of acetabular component with more accuracy could obtain some acetabular reconstruction plan better in accordance with stress distributions during normal gait.