Abstract:Objective The biomechanical comparison between the novel scapular neck anatomical locking plate (SNALP) and the Watson reconstruction plate (WTRP) was conducted, so as to observe characteristics and advantages of the SNALP in the aspect of biomechanics. Methods Twelve preserved and moistened adult scapula cadaver specimens (7 males and 5 females) were selected and molded into scapular neck fracture (Miller's type II B) specimens, which were randomly divided into experimental and control groups according to the order of specimen collection and gender: the SNALP for internal fixation was used in experimental group, and the WTRP for internal fixation was used in control group. The specimens were placed on the biomechanical testing machine, then the scapular neck tensile test, plate screw anti-pullout test and dynamic fatigue test were conducted respectively. The experimental data were collected by the computer connected to the experimental terminal, and the stress-displacement curves and cycle-displacement curves were plotted. Results In the scapular neck tensile test, the average tensile strength of experimental group [(356.50±32.19) N ] was better than that of control group [(193.83±29.39) N] (P<0.05). In the anti-pullout test of scapular neck plate and screw, the average anti-pullout force of experimental group [(263.83±22.85) N] was better than that of control group [(135.50±15.40) N] (P<0.05). In dynamic fatigue test, the average displacement of experimental group was smaller than that of control group within 300 cycles (P<0.05), and no fracture and loosening of the steel plate and screw occurred. Conclusions The novel SNALP is better than the WTRP in terms of tensile, pullout and dynamic fatigue biomechanical properties, and can provide a more ideal internal fixation system for clinical treatment of scapular neck fractures.