基于3D打印矫形器三点力学数据与机器学习的特发性脊柱侧弯Cobb角预测及临床评价
DOI:
CSTR:
作者:
作者单位:

1.徐州医科大学 医学信息与工程学院;2.山东第二医科大学 康复医学院;3.上海交通大学转化医学研究院;4.上海理工大学 健康科学与工程学院 上海;5.上海交通大学医学院附属第九人民医院

作者简介:

通讯作者:

中图分类号:

R318

基金项目:


Prediction and Clinical Evaluation of Cobb Angle in Idiopathic Scoliosis Using Machine Learning and Mechanical Data from Three Points of 3D-Printed Orthoses
Author:
Affiliation:

1.School of Medical Information and Engineering,Xuzhou Medical University,Xuzhou;2.School of Rehabilitation Medicine,Shandong Second Medical University;3.Institute of Translational Medicine,Shanghai Jiao Tong University;4.School of Health Sciences and Engineering,University of Shanghai for Science and Technology;5.Department of Orthopedics,Ninth People'6.'7.s Hospital,Shanghai Jiao Tong University School of Medicine

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 构建基于3D打印矫形器三点力学数据与多种机器学习算法的特发性脊柱侧弯(AIS)Cobb角预测模型,以提供一种创新的、无辐射的AIS早期临床筛查和监测方法。方法 采集AIS患者的临床数据及3D打印矫形器的力学数据,构建包含性别、年龄、疾病类型、体重和Risser评分等特征的综合数据集。使用随机森林、支持向量回归、梯度提升等六种算法构建并评估Cobb角预测模型性能。结果 Gradient Boosting模型在准确率、精确率和F1-Score等指标上表现最佳,CatBoost模型在准确率和AUC值上表现出色。Gradient Boosting模型的预测值准确达到0.942,与实际Cobb值拟合较好。结论 基于力学数据和机器学习的Cobb角预测模型有效避免了早期临床筛查中传统全脊柱X光片检查的辐射风险,实现了AIS患者的非侵入性评估,提高了筛查和监测的安全性和效率,为临床医生提供了有力的辅助决策工具,具有重要的临床意义。

    Abstract:

    Objective To develop a Cobb angle prediction model for adolescent idiopathic scoliosis (AIS) based on three-point mechanical data from 3D-printed orthotics and various machine learning algorithms, providing an innovative, radiation-free method for early clinical screening and monitoring of AIS.MethodsClinical data from AIS patients and mechanical data from 3D-printed orthotics were collected to construct a comprehensive dataset with features such as gender, age, disease type, weight, and Risser score. Using six algorithmsRandom Forest, Support Vector Regression, Gradient Boosting, and othersto construct and evaluate the performance of Cobb angle prediction models.ResultsThe Gradient Boosting model outperformed others in terms of accuracy, precision, and F1-Score, while the CatBoost model also showed excellent performance in accuracy and AUC. The Gradient Boosting model achieved an accuracy of 0.942, fitting well with the actual Cobb values.Conclusion The Cobb angle prediction model based on mechanical data and machine learning effectively avoids the radiation risks associated with traditional full-spine X-ray examinations in early clinical screening. It provides a non-invasive assessment for AIS patients, enhancing the safety and efficiency of screening and monitoring, and offering a powerful decision-making tool for clinicians, with significant clinical implications.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-25
  • 最后修改日期:2024-10-18
  • 录用日期:2024-10-21
  • 在线发布日期:
  • 出版日期:
文章二维码
关闭