文章编号:1004-7220(2020)01-0077-06

应力对新型镁合金骨钉体外降解速率影响的实验研究

马晓孟, 胡志刚, 祖向阳, 王新征, 杜 喆 (河南科技大学 医学技术与工程学院, 河南 洛阳 471003)

摘要:目的 研究应力对新型镁合金骨钉体外降解速率的影响。方法 根据逆向建模方法建立胫骨骨折三维模型 设计体外降解实验装置,用有限元计算得到的骨钉应力分布加载实验载荷,有效提高实验的准确性及效率。实验 共分为4组,A组作为对照组不加力,B、C和D组分别施加150、250、350N轴向压力,研究不同力学环境对骨钉体 外降解速率的影响程度。将应力分布与体外降解实验结果结合,得到应力与新型镁合金骨钉体外降解速率的变化 曲线。结果 体外降解实验表明,A组失重最小,产生氢气最少,平均降解速率为(0.315±0.005)mm/年;有应力组 随着施加载荷的增大,失重、产氢量逐渐增加,B、C、D组平均降解速率分别为(0.379±0.006)、(0.469±0.007)、 (0.547±0.009)mm/年。结论 新型镁合金骨钉在力学环境中进行降解时,骨钉所受的应力越大,其降解速率越 快;得到新型镁合金骨钉所受的最大应力与平均体外降解速率之间的关系曲线,为镁合金骨钉的选材、设计及临床 应用提供数据支撑和理论指导。

关键词:应力; 镁合金骨钉; 有限元分析; 体外降解速率 中图分类号: R 318.01 **文献标志码**: A **DOI**: 10.16156/j.1004-7220.2020.01.016

Experimental Study of Stress Effects on the Degradation Rate *in vitro* of Novel Magnesium Alloy Bone Screws

MA Xiaomeng, HU Zhigang, ZU Xiangyang, WANG Xinzheng, DU Zhe (School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471003, Henan, China)

Abstract: **Objective** To study the effect of stress on the degradation rate *in vitro* of novel magnesium alloy bone screw. **Methods** A three-dimensional (3D) model of the tibia fracture was established using the reverse engineering method. Then, based on the FE model, the *in vitro* degradation experimental device for bone screws was designed. The stress distribution of the screw by finite element calculation was used as the *in vitro* experimental load, which effectively improved the accuracy and efficiency of the experiment. The experimental samples were divided into four groups. Group A was treated as control group without force application, while Groups B, C and D were subjected to 150, 250 and 350 N axial forces. The influence of different mechanical environment on the degradation rate *in vitro* of bone screws was investigated. Finally, combining the stress distributions with the degradation experiment results *in vitro*, the curve between the stress and the degradation rate *in vitro* showed that Group A had the lowest weight loss and hydrogen production, and the average degradation rate was (0.315 \pm 0.005) mm/a. While in the stress groups, the weight loss and hydrogen production increased gradually with the

axial force increasing. The average degradation rates of Groups B, C and D were (0.379 ± 0.006) , (0.469 ± 0.007) and (0.547 ± 0.009) mm/a, respectively. **Conclusions** When the novel magnesium alloy bone screw was degraded in mechanical environment, the greater stress on the screw would cause the faster degradation rate *in vitro*. The obtained relationship between the maximum stress and the average degradation rate *in vitro* of the novel megnesium alloy bone screw provided data support and theoretical guidance for material selection, design and clinical application of magnesium alloy bone screws.

Key words: stress; magnesium alloy bone screw; finite element analysis; degradation rate in vitro

随着意外伤害以及老年骨质疏松性骨折发病 率大幅增加,骨科临床对骨钉的需求量越来越大, 对骨钉性能也提出更高的要求。可降解骨钉的应 用不仅可以减少二次手术带来的痛苦,缩短治疗周 期,还可以降低治疗成本[1]。与目前临床上常用的 骨钉材料相比,镁合金在可降解性、生物相容性、力 学性能方面优势明显,特别是降解过程中释放的镁 元素能促进骨细胞合成,加速断骨生长,是一种理 想的骨科植入材料^[2]。研究表明,镁合金的降解速 率过快,机械强度不足,极大限制了其在临床的应 用^[3]。新型镁合金材料由镁、锌、钕、钙等元素合 成,机械性能优良。新型镁合金骨钉的降解速率除 受合金元素、加工工艺等自身因素的影响外,还受 到腐蚀环境、温度、pH 值和应力等外部因素的影 响[4]。鉴于人体内环境相对稳定,镁合金骨钉在植 入人体之后,应力是影响其降解速率的关键因 素^[5]。目前,关于应力对镁合金骨钉降解速率影响 的研究相对较少,故本文以胫骨骨折为例,研究应 力对新型镁合金骨钉体外降解速率的影响,为镁合 金骨钉的进一步研究和应用提供数据支撑和理论 指导。

1 材料和方法

基于 CT 数据建立胫骨骨折的三维模型,通过 有限元分析,计算骨钉的应力分布情况。根据胫骨 模型,确定体外降解实验中动物骨(羊骨)的参数并 进行处理,设计组装实验装置进行降解实验。结合 应力分布及镁合金骨钉的形貌变化,确定分析区 域,研究应力对新型镁合金骨钉体外降解速率的影 响(见图1)。

1.1 胫骨三维模型建立

选择1名胫骨骨折的成年男性志愿者,身高 170 cm,体质量60 kg,通过64 排双源螺旋CT

(SIEMENS公司,德国)进行轴向连续断层扫描,扫 描时双下肢固定平放,髌骨朝上,踝关节处于踝穴 位^[6],自股骨远端至足底,扫描条件:电压 120 kV、 电流 300 mA、骨组织窗扫描,层厚 1.0 mm,共取得 548 层 DICOM 格式数据。将 DICOM 格式数据依次 导入 Simpleware 建模软件、Geomagic Studio 逆向建 模软件、SolidWorks 三维建模软件中进行处理,得到 胫骨的实体模型,并设置胫骨机械轴(通过胫骨平 台中点及踝关节穴顶点)为坐标轴^[7]。

1.2 有限元计算

通过布尔运算,建模得到含钉孔的胫骨骨折三 维模型。将该模型与骨钉模型导入有限元计算软 件 ABAQUS 6.14 中进行装配,建立胫骨骨折有限元 模型。胫骨为均质、各向同性的线弹性材料,弹性 模量为 12.8 GPa,泊松比为 0.3^[8]。新型镁合金骨 钉的弹性模量为 44.8 GPa,泊松比为 0.35。

志愿者体质量为60 kg,站立时胫骨平台受力约 占人体质量 85.6%^[6],由于模型是半剖面体,故模 型受静态力约为 250 N。结合临床胫骨骨折康复训 练的实际情况,术后前6周,胫骨平台负重不超过 20 kg^[9],本文选择施加 150 N 轴向力。6 周之后,胫 骨平台受力不断增加^[10],本文选择施加 350 N 轴向 力。因此,分别对胫骨平台施加 150、250、350 N 轴 向表面载荷,胫骨远端关节面完全约束。骨钉网格划分的布种尺寸为 0.2,胫骨皮质骨网格划分布种尺寸为 2.5,单元类型为 C3D10;骨钉的节点数为 365 649,单元数为 252 348;胫骨的节点数为 17 132,单元数为 63 462。

1.3 骨钉体外降解试验

1.3.1 新型镁合金骨钉 根据中国国家食品药品 监督管理局发布《骨接合植入物 金属接骨螺钉》 规定的YY 0018-2016标准^[11],设计建立新型镁合 金骨钉的三维模型。由于胫骨骨折多采用皮质骨 螺钉进行固定,螺纹的形状为浅螺纹,钉头为球形 内六角结构,骨钉型号 HA3.5 Q 03,骨钉长为 30 mm。

1.3.2 实验方法 选取新鲜动物骨,根据所建人体胫骨模型骨折处骨壁的厚度和骨髓腔的大小,对动物骨进行加工处理,并建立与胫骨模型相似的骨折缝,钻孔攻丝后用新型镁合金骨钉进行固定。腐蚀介质选取 Hank's 液。骨钉表面积为 30 mL/cm^{2[12]},用 5.6% NaHCO₃ 溶液将 pH 调节至 7.2~7.4。根据有限元力学模型分别对动物骨上端面施加 150、250、350 N 轴向压力。实验共分为 A、B、C、D 4 组,每组 4 个样本。A 组不加力作为对照组,B、C、D 组分别施加 150、250、350 N 垂直向下的压力,力的大小由装置中弹簧压缩产生的弹力控制。实验装置如图 2 所示。

Fig.2 Experimental device (a) Experimental environment, (b) Mechanical loading diagram

实验在无菌环境中进行。将装置放置于 37 ℃ 恒温箱中,每 24 h 测量所产生氢气(H₂)的体积,分 别在第 24、120、240 和 360 h 从装置中取出骨钉,用 蒸馏水和乙醇清洗,常温干燥后用扫描电子显微镜 (JSM-7800F, JEOL 公司,日本)观察骨钉表面形貌。 用 200 g/L 的 CrO₃ 和 10 g/L 的 AgNO₃ 溶液室温下 超声清洗 20 min 去除骨钉表面沉积的腐蚀产物,经 蒸馏水冲洗并充分干燥后用万分天平称重,降解速 率计算公式如下:

 $v_{CORR} = (8.76 \times 10^4 \times W)/(A \times T \times D)$ (1) 式中: v_{CORR} 为降解速率,单位 mm/a,a 代表年;W为 失重,单位 g;A 为骨钉与溶液接触的表面积,单位 为 cm²;T 为浸泡时间,单位为 h;D 为新型镁合金的 密度,单位 g/cm³。

1.4 统计学分析

数据以均数±标准差表示。采用 SPSS 统计软件进行分析,各时间点间比较采用单因素方差分析,两组间比较采用 t 检验,检验水准 α=0.05。

2 结果

2.1 有限元计算结果

根据骨钉与骨头的接触区域,将骨钉划分为 5个区, I 区是球形钉头部分, II 区和Ⅳ区是与骨头 接触的部分, III 区是骨髓腔中的部分, V 区是穿过 骨头的钉尾部分。通过有限元计算可知, II、Ⅳ区 的应力水平较高, III 区次之, I、V 区的应力水平较 低(见图 3)。当作用在胫骨平台的压力分别为 150、250、350 N 时,骨钉的最大应力分别为 23.68、 39.40、55.15 MPa,且均在弹性形变限度内。

2.2 骨钉体外降解实验结果

2.2.1 骨钉失重及产氢量 图 4 所示为骨钉体外降解实验失重、产氢量和降解速率随时间的变化曲线。可以看出,新型镁合金骨钉在 Hank's 液中的失重不断增大,且 D 组的失重最大,为(18.2±0.3) mg,A 组的失重最小,为(10.5±0.2) mg。各时间点间比较差异均有统计学意义(P<0.05),组间差异有统计学意义(P<0.05)。实验开始后,可观察到新型镁合金骨钉表面有气泡产生,收集 H₂并测量体积,产生 H₂ 最多的是 D 组,为(16.17±0.19) mL;最少的是 A 组,为(9.46±0.17) mL,各时间点间比较差异有统计学意义(P<0.05)。随着骨钉的降解,失重

MA Xiaomeng, et al. Experimental Study of Stress Effects on the Degradation Rate in vitro of

Novel Magnesium Alloy Bone Screws

和产氢量不断增加。由图 4(c)可知,A 组的降解速 率不断降低,B、C、D 组的降解速率在前 240 h 内逐 渐降低,之后有增大的趋势。在 240 h 左右, B 组的 降解速率低于 A 组。

图 4 骨钉体外降解的失重、产氢量和降解速率

Fig.4 Weight loss, H₂ production and degradation rate of bone screws degraded *in vitro* (a) Weight loss, (b) H₂ production, (c) Degradation rate *in vitro*

2.2.2 腐蚀形貌 图 5 所示为新型镁合金骨钉降解 360 h 后的概貌和用扫描电镜观察骨钉Ⅲ区同一部位 表面微观形貌。腐蚀严重的是骨钉与 Hank's 液接 触的部分,且Ⅲ区两端腐蚀最严重,可观察到有大量 腐蚀坑出现。Ⅱ、Ⅳ区在动物骨里面,与腐蚀介质接触 面积最小,腐蚀最轻微。表面微观形貌图的放大倍数为2000倍。A组骨钉的腐蚀产物布满整个样品表面,并龟裂均匀,形成细小的片状;B组骨钉表面片状腐蚀产物部分降解,有较小腐蚀坑出现;C组和D组骨钉表面腐蚀严重,有腐蚀坑出现,且D组腐蚀坑更大。

Fig.5 Overview and surface morphology of novel magnesium alloy bone screw after degradation for 360 h

(a) Group A, (b) Group B, (c) Group C, (d) Group D

3 讨论与结论

Waizy 等^[13]进行了腐蚀环境对镁合金力学性 能影响的研究,将 MgCa0.8 螺钉固定在仿生骨上, 实验分为无腐蚀和腐蚀两组,采用 Hank's 液作为 腐蚀环境,分别在无腐蚀和腐蚀 24、48、72 及 96 h 后进行拉脱力实验。结果表明,一定时间后,腐蚀 组螺钉的机械性能有明显下降。新型镁合金骨钉 在 Hank's 液中很容易通过电偶腐蚀发生降解。应 力会造成可降解镁合金发生应力腐蚀开裂,加速镁 合金的降解^[14]。Denkena 等^[15]研究了 LAE442 镁 合金在浓度为 0.9% NaCl 溶液中受到 5 kN 压应力 下的腐蚀情况,通过对比氢气产量,发现镁合金在 5 kN压应力作用下比无应力组产氢量更大,降解更 迅速。Tuchscheerer 等^[16]为镁合金试样提供拉伸和 3 点弯曲载荷,并研究镁合金在蒸馏水和 NaCl 溶液 中的体外降解情况。结果表明,在低应力水平下, 腐蚀速度随着载荷的增加而增大。但 NaCl 溶液与 人体液成分差别较大,大量 Cl⁻会加速镁合金的降 解。本研究采用 Hank's 液作为腐蚀介质,其成分 与人体液相近。Dong 等^[17]研究力学对镁合金在 SBF 溶液中降解的影响,发现剪切力越大,降解速率 越快,但其加力装置为橡皮筋,误差较大。以上研 究均仅限于体外降解实验,本文采用实验与有限元 分析相结合的方法,研究新型镁合金骨钉应力分布 对体外降解速率的影响,提高了实验的准确性。

基于 CT 数据逆向建模的有限元计算是一种可 靠的分析方法^[18-19]。虽然目前基础力学研究尚不 能全面反映骨钉在体内的实际情况,但是可以有效 反映骨钉在特定工况下的应力分布规律。本文通 过有限元法研究骨钉在固定断裂胫骨时的应力分 布规律。结果表明,在弹性形变限度内,随着作用 在胫骨平台上压力的增大,骨钉所受的应力水平也 有所提高。由图3可知,骨钉Ⅱ区和Ⅳ区的应力水 平较高,Ⅲ区次之,且Ⅲ区两端应力水平比Ⅲ区其 他部位高, I 区和 V 区的应力水平较低。由图 5 可 知,在体外降解实验中,骨钉Ⅱ区和Ⅳ区与骨头密 切接触,与腐蚀介质的接触少,腐蚀轻微,在治疗骨 折的过程中起到了很好的固定作用,但影响对其降 解速率的研究。因此,本文选择以骨钉Ⅲ区作为研 究对象。对比图3和图5发现,骨钉Ⅲ区两端的应 力水平高于Ⅲ区中间部位,腐蚀坑也比中间部位 多,说明应力水平高的部位,降解迅速。A、B、C、D 组所施加的轴向压力逐渐增大,应力水平逐渐提 高,结合图5的微观形貌图发现,随着载荷的增加, 腐蚀坑越明显,腐蚀越严重,说明应力对新型镁合 金骨钉的腐蚀影响较大。

由图 4(c)可知,实验初期镁合金骨钉的降解速 率不断减小。新型镁合金骨钉在 Hank's 液中很容 易通过电偶腐蚀发生降解,产生 MgO、Mg(OH)₂ 附 着在镁合金的表面^[20],形成一层保护膜,使降解速 率减慢。由于 H₂ 的析出,氧化膜疏松多孔^[21],在降 解初期,骨钉表面产生片状腐蚀产物。Hank's 液富 含 Cl⁻,Cl⁻可将 Mg(OH)₂ 转化成 MgCl₂,MgCl₂ 溶解 产生 Mg²⁺和 Cl⁻,Cl⁻可以通过破裂的保护膜与未发 生腐蚀的合金材料进行反应,降解继续进行,从而 发生更严重的点蚀,逐渐形成腐蚀坑。在 240 h 时, B 组的降解速率低于 A 组,由于电偶腐蚀和应力腐 蚀的 共同作用,前期降解产生大量的 MgO、 Mg(OH)₂形成保护膜附着在骨钉表面,使降解速率 减缓。B组的应力腐蚀作用大于A组,保护膜加速 破裂,240h后,B组的降解速率有增大的趋势。

在 360 h内,无外加应力组的平均降解速率为 (0.315±0.005) mm/a。当轴向压力为 150 N时,新 型镁合金骨钉所受的最大应力为 23.68 MPa,平均 降解速率为(0.379±0.006) mm/a;当轴向压力为 250 N时,骨钉的最大应力为 39.40 MPa,平均降解 速率为(0.469±0.007) mm/a;当轴向压力为 350 N 时,骨钉的最大应力为 55.15 MPa,平均降解速率为 (0.547±0.009) mm/a;说明轴向载荷越大,骨钉所 受应力越大,体外降解速率越快(见图 6)。骨折愈 合的周期一般为 3 个月,故骨钉在 3 个月内要保证 有足够的机械性能。后续研究工作应将骨钉的机 械性能考虑在内,当骨钉的降解速率过快导致机械 性能下降时,应考虑减少骨钉的受力,或者为新型 镁合金骨钉镀膜以减缓降解速率。

与目前关于镁合金降解的实验研究相比,本文 采用实验与有限元分析相结合的方法,研究新型镁 合金骨钉应力分布对体外降解速率的影响,有效提 高实验的效率和准确性,并得到新型镁合金骨钉 的最大应力与体外降解速率之间的关系。无应力 作用时,新型镁合金骨钉在前 360 h 内的降解速率 不断减小;当骨钉受到应力作用时,体外降解速率 呈现先减小后增大的趋势。骨钉所受的应力越 大,产氢量和失重越大,骨钉表面的腐蚀坑越严 重,平均体外降解速率越快。本研究结果为镁合 金骨钉的选材、设计及临床应用提供数据支撑和 理论指导。 MA Xiaomeng, et al. Experimental Study of Stress Effects on the Degradation Rate in vitro of

参考文献:

- HENDERSON SE, VERDELIS K, MAITI S, *et al.* Magnesium alloys as a biomaterial for degradable craniofacial screws [J]. Acta Biomater, 2014, 10(5): 2323-2332.
- [2] WITTE F. The history of biodegradable magnesium implants: A review [J]. Acta Biomater, 2015, 23: S28-S40.
- [3] ZHEN Z, XI T, ZHEN Y, et al. In vitro study on Mg-Sn-Mn alloy as biodegradable metals [J]. J Mater Sci Technol, 2014, 30(7): 675-685.
- [4] 钮长慧. 医用镁合金体外降解行为研究[D].南京: 东南大 学,2015.
- [5] 高元明,张阔,王丽珍,等.高纯镁在体内定量载荷下的降 解行为[J]. 医用生物力学, 2018, 33(5): 417-422.
 GAO YM, ZHANG K, WANG LZ, et al. In vivo degradation performance of high-purity magnesium subjected to quantitative mechanical load [J]. J Med Biomech, 2018, 33(5): 417-422.
- [6] LIN YL, MA LM, ZHU Y, et al. Assessment of fracture risk in proximal tibia with tumorous bone defects by a finite element method [J]. Microsc Res Tech, 2017, 80(9): 975-984.
- SHAO JJ, VAIL TP, WANG QJ, et al. Anatomical references for tibial sagittal alignment in total knee arthroplasty: A comparison of three anatomical axes based on 3D reconstructed CT images [J]. Chin Med J, 2013, 126(20): 3840-3844.
- [8] ATMACA H, OZKAN A, MUTLU I, et al. The effect of proximal tibial corrective osteotomy on menisci, tibia and tarsal bones: A finite element model study of tibia vara [J]. Int J Med Robot Comp, 2014, 10(1): 93-97.
- [9] THEWLIS D, FRAYSSE F, CALLARY SA, et al. Postoperative weight bearing and patient reported outcomes at one year following tibial plateau fractures [J]. Injury, 2017, 48(7): 1650-1656.
- [10] ARNOLD JB, TU CG, PHAN TM, et al. Characteristics of postoperative weight bearing and management protocols for tibial plateau fractures: Findings from a scoping review [J]. Injury, 2017, 48(12): 2634-2642.
- [11] 国家食品药品监督管理局. YY 0018-2008 骨接合植入物 金

属接骨螺钉[S]. 北京:中国标准出版社, 2016.

- [12] MAO L, YUAN GY, WANG SH, et al. A novel biodegradable Mg-Nd-Zn-Zr alloy with uniform corrosion behavior in artificial plasma [J]. Mater Lett, 2012, 88(8): 1-4.
- [13] WAIZY H, WEIZBAUER A, MAIBAUM M, et al. Biomechanical characterisation of a degradable magnesiumbased (MgCa0.8) screw [J]. J Mater Sci Mater Med, 2012. 23(3): 649-655.
- [14] WINZER N, ATRENS A, SONG GL, et al. A critical review of the stress corrosion cracking (SCC) of magnesium alloys [J]. Adv Eng Mater, 2010, 7(8): 659-693.
- [15] DENKENA B, KÖHLERA J, STIEGHORSTA J, et al. Influence of stress on the degradation behavior of Mg LAE442 implant systems [J]. Procedia CIRP, 2013, 5: 189-195.
- [16] TUCHSCHEERER F, KRÜGER L. Hydrogen-induced embrittlement of fine-grained twin-roll cast AZ31 in distilled water and NaCl solutions [J]. J Mater Sci, 2015, 50(14): 5104-5113.
- [17] DONG LM, LI X, HAN SH, et al. Qualitative study on mechanical environment affecting the degradation of the magnesium alloys [J]. Mech Mater Eng, 2014, 528: 162-167.
- [18] 杨腾飞,王金武,胡志刚,等.颈部肌肉作用下颈椎牵引的 生物力学特性[J]. 医用生物力学, 2017, 33(2):161-166.
 YANG TF, WANG JW, HU ZG, *et al.* Biomechanical properties of cervical traction under neck muscle force [J].
 J Med Biomech, 2017, 33(2): 161-166.
- [19] 方润心,纪爱敏,盛伟,等. 接骨板不同螺钉布局下骨愈合过 程有限元分析[J]. 医用生物力学, 2018, 33(5): 435-441.
 FANG RX, JI AM, SHENG W, *et al.* Finite element analysis on bone healing under different screw configurations
 [J]. J Med Biomech, 2018, 33(5): 435-441.
- [20] XU DK, HAN EH. Effect of quasicrystalline phase on improving the corrosion resistance of a duplex structured Mg-Li alloy [J]. Scripta Mater, 2014, 71: 21-24.
- [21] SASIKUMAR Y, KUMAR AM, BABU RS, et al. Biocompatible hydrophilic brushite coatings on AZX310 and AM50 alloys for orthopaedic implants [J]. J Mater Sci-Mater M, 2018, 29(8): 123.