文章编号:1004-7220(2022)05-0952-08

基于瞬态分析的桡骨远端骨折外固定支具结构优化设计

张静1, 萨日娜1, 嘎拉台2

(1. 内蒙古工业大学 机械工程学院, 呼和浩特 010051;2. 内蒙古医科大学 蒙医药学院, 呼和浩特 010110)

摘要:目的 针对桡骨远端骨折外固定支具缺乏腕关节阶段性功能锻炼的问题,提出一种基于瞬态分析的外固定 支具结构优化设计方法,为外固定支具结构设计提供理论参考依据。方法 确定外固定支具固定、牵伸、活动3种 工作模式,围绕牵伸、活动模式进行瞬态动力学分析,以判断其在牵伸、活动载荷作用下应力、变形等变化。对外固 定支具的重要尺寸进行灵敏度分析,筛选出关键尺寸,以此为设计变量,以质量、最大变形量为目标变量。采用正 交试验法、模糊优化方法建立数学模型,使多目标问题变为单目标问题,进而通过遗传算法优化求解。结果 所设 计的外固定支具在牵伸、活动模式下均满足设计需求,且具有较强的刚性。经尺寸优化求解,优化后模型与原模型 相比质量下降 5%,最大变形减少 8%。结论 研究结果达到轻量化的目的,为桡骨远端骨折外固定支具改进设计 和研究奠定基础。

关键词: 桡骨远端; 外固定; 瞬态分析; 正交试验; 模糊优化 中图分类号: R 318.01 文献标志码: A DOI: 10.16156/j.1004-7220.2022.05.028

Structure and Optimal Design of External Fixator for Distal Radius Fracture Based on Transient Analysis

ZHANG Jing¹, SA Rina¹, GA Latai²

(1. College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;
2. College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot 010110, China)

Abstract: Objective In term of the issue that external fixator for distal radius fractures was lack of phased functional exercise of the wrist, a method for optimizing the design of external fixator structures based on transient analysis was proposed, so as to provide theoretical references for the design of external fixator structure. **Methods** Three working modes, namely, fixation, traction and flexibility were determined. Transient dynamic analysis was carried out targeting at the traction and flexibility mode of external fixator, so as to judge its stress and displacement changes under traction and flexibility loads. The key dimensions of external fixator were selected by sensitivity analysis, so as to screen out the important dimensions, and mass and maximum displacement were selected as target variables. Orthogonal test method and fuzzy optimization method were used to establish the mathematical model to change the multi-objective problem into a single objective problem, and then genetic algorithm was used to optimize the solution. **Results** The design of external fixator met design requirements in both traction and flexibility modes, with a stronger rigidity. The dimensional optimization has result ed in a 5% reduction in mass and an 8% reduction in maximum deformation compared to the original model. **Conclusions** This study achieves the goal of lightweight design and lays the foundation for improved design and research of external fixator for distal radius fractures.

Key words: distal radius; external fixator; transient analysis; orthogonal experimental; fuzzy optimization

基金项目:国家自然科学基金项目(51765052),内蒙古自然科学基金项目(2020LH05009)

通信作者:萨日娜,副教授,E-mail:srnnmg@163.com

桡骨远端骨折治疗过程包括手法复位、固定、 功能锻炼3个阶段。目前,桡骨远端骨折固定方式 主要为手术治疗和保守治疗。除创伤较大的开放 性骨折及关节内不稳定型粉碎性骨折外,临床上通 常还是以保守治疗为主,即通过石膏、夹板或支具 外固定^[1-2]。针对骨折固定,骨科专家尚天裕提出 "动静结合"理念,即骨折固定(静)与早期的功能锻 炼(动)结合起来^[3];近年来,骨折固定理念已从刚 性固定逐渐向弹性固定靠拢,即允许骨折断端在愈 合过程,产生一定程度的"微动"^[4]。此外,研究表 明,腕部阶段性的功能锻炼也可促进腕关节功能 恢复^[5]。

针对外固定结构设计,国内外开展过很多相关的研究。Blaya等^[6]基于三维数字化技术和逆向工程软件三维建模,提出一种使用聚乳酸(polylactic acid, PLA)作为材料的 3D 打印夹板模型,以改善患者生活质量。Yan 等^[7]利用 3D 扫描先获取患者手臂模型,再测出压力分布的规律,进而设计出轻量化、个性化的夹板。何云涛等^[8]提出一种模块化的夹板设计方法,运动学和力学分析后结合实验,验证该夹板设计方案的可行性和有效性。此外,魏成建等^[9]发明的智能气囊小夹板、Gupta等^[10]研制的可定制手指夹板矫形器等都有力地推动了外固定支具的发展,丰富了其结构和临床应用的范围。

综上所述,很多学者从材料、结构等方面对外 固定支具做出改进设计,但外固定支具结构设计阶 段鲜有考虑实现腕关节多自由度"微动"和阶段性 功能恢复等方面因素,可能导致骨折完全复位后患 臂运动功能恢复欠佳的局限性。本文提出基于瞬 态分析的外固定支具结构优化设计方法,体现"动 静结合"和"弹性固定"理念,确定其固定、牵伸、活 动3种功能模式,给予腕关节阶段性功能锻炼,从 而解决上述问题。本文围绕外固定支具牵伸、活动 模式进行瞬态分析,通过正交试验法、模糊优化方 法进行尺寸优化设计,最终达到轻量化设计目的, 验证结构设计方案的有效性和可行性,为桡骨远端 骨折外固定支具改进设计和研究奠定基础。

1 外固定支具结构设计

1.1 设计思想

根据上述分析,符合"动静结合"和"弹性固定"

理念的外固定支具需满足:阶段性的功能锻炼使患 者腕关节更好地恢复,且腕关节微动的范围不再局 限于掌、背、尺、桡侧偏转。

为此,新型外固定支具将上述固定理念根据治 疗过程不同阶段,转换为固定、牵伸、活动3种模 式,且可以相互进行转化。在骨折愈合初期,外固 定支具处于固定模式,保证骨折断端解剖复位和功 能复位稳定。研究表明,通过调节至牵伸模式,给 予一定程度的轴向牵拉刺激,可有效减缓桡骨短缩 的程度,对抗前臂肌肉收缩力,防止骨折断端移 位^[11]。经过一段时间治疗后,外固定支具转化为活 动模式,为了防止手腕功能受到限制,腕关节可实 现多自由度的微动,其活动范围也可根据需求而逐 渐增加,进而增强骨折断端愈合的稳定性。此外, 该外固定支具基于模块化设计思想,通过两个模块 和夹板连接,每个功能模块均具备固定、牵伸和活 动的工作能力。

1.2 结构设计方案

本课题组设计了一种用于手腕骨折的康复装 置^[12],其外固定支具三维模型如图1所示。整体结 构由上、下夹板和功能模块三部分构成。固定模式 时,上、下夹板分别套在手掌和手臂上并抵紧,此时 功能模块的约束弹簧处于自然状态,在不施加任何 外力的前提下,手腕将无法转动,达到限制骨位的 作用。牵伸模式时,患者通过施加轴向外力,上、下 夹板相分离,手掌模块跟随手掌运动,从而滑块沿 滑槽向上滑动,对约束弹簧施加拉力,克服约束弹 簧的弹力,使约束弹簧向上伸长,从而进行小幅度 的牵伸运动。活动模式时,通过施加外力来活动手 腕,球关节转动一定角度,达到腕关节阶段性功能 锻炼的目的。

(a) Fixation mode, (b) Traction mode, (c) Flexibility mode

2 材料与仿真分析

外固定支具上、下夹板材料采用 PLA,其余材 料采用丙烯腈-丁二烯-苯乙烯共聚物(acrylonitrile butadiene styrene, ABS)塑料,经查阅手册,确定其材 料参数。由外固定支具的结构设计方案可知,牵 伸、活动模式时属于动力学分析范畴。通过有限元 分析软件 Workbench 18.0 的 Transient Structural 模 块对外固定支具牵伸、活动模式进行瞬态分析,以 判断其在牵伸、活动载荷作用下的应力、变形变化, 进一步验证其可行性。

2.1 外固定支具牵伸模式仿真分析

2.1.1 步长选择及载荷施加 外固定支具处于牵 伸模式时,主要受到一定程度的拉伸力。为获取前 臂力学信息,通过查阅相关文献,获得量化数据^[13]。 模拟往复牵伸运动,且依据力的相互作用,对外固 定支具上夹板施加正、反方向的轴向牵引力(见 表1)。外固定支具下夹板底部施加固定约束,时间 步长设置为15 s。

表1 施加力

Tab. 1 Applied force

时间/s	施加载荷/N	时间/s	施加载荷/N
0	0	8	-50.18
1	8. 57	9	-41.14
2	11.71	10	-32.28
3	17.14	11	-24.57
4	24. 57	12	-17.14
5	32. 28	13	-11.71
6	41.14	14	-8.51
7	50. 18	15	0

2.1.2 加载和求解 牵伸模式瞬态分析结果如 图 2 所示。外固定支具最大形变发生于 7.5 s 时 刻,为 6.78 mm;等效应力主要集中于球下关节处,于 8 s 时刻达到最大 17.11 MPa;弹簧伸长量最大为 6.744 mm。基于此,可为外固定支具活动模式转动 角度范围提供依据。

2.2 外固定支具活动模式仿真分析

活动模式时,外固定支具可通过球关节实现空 间多自由度的转动。因外固定支具转动过程中在 桡、尺、掌、背处转动角度达到最大,且桡、尺偏的转 动角度相同,即模拟仿真其中一个即可,掌屈背伸 同理。

Fig. 2 Results of transient analysis on traction mode

(a) Total deformation curve and nephogram,

(b) Equivalent stress curve and nephogram

2.2.1 步长选择及载荷施加 外固定支具处于活动模式时,活动范围不受限,步长设置为1个载荷步,通过施加转动载荷来进行分析,其最大转动角度计算公式为:

$$\alpha = \arcsin \frac{2\Delta x}{l_1} \tag{1}$$

$$\beta = \arcsin \frac{2\Delta x}{2l_2 + W} \tag{2}$$

式中: Δx 为弹簧伸长量; l_1 为上夹板底长; l_2 为上夹 板的底宽; W 为手臂模块的厚度。模型中,经牵伸 模式求解, $\Delta x = 6.744 \text{ mm}$, 令 $l_1 = 70 \text{ mm}$, $l_2 = 40 \text{ mm}$, W=12 mm,经计算得出其转动角度,桡、尺偏最大为 11.1°,背伸、掌屈最大为 8.4°。转动载荷施加情况 如图 3 所示。

Fig. 3 Rotating load application (a) Radial deflection status, (b) Dorsiflexion status

2.2.2 加载和求解 活动模式瞬态分析结果如 图 4 所示。模拟外固定支具桡偏运动时,转动角度

由 0°逐渐增大到 11.1°。外固定支具形变由 0.530 mm 逐渐增大到 13.254 mm,其最大形变发生在上 夹板处。等效应力从 0.188 MPa 逐渐增大又减小 到 0.612 MPa,其最大等效应力发生于手掌模块与 球上关节接触处。

模拟外固定支具背伸运动时,转动角度由0°逐 渐增大到8.4°。外固定支具形变由0.322 mm逐渐 增大到8.151 mm,其最大形变发生在上夹板处。等 效应力从0.958 MPa逐渐增大到15.628 MPa,其最 大等效应力发生于手掌模块与球上关节接触处。

图 4 活动模式瞬态分析结果

Fig. 4 Results of transient analysis on flexibility mode (a) Total radial deflection deformation curve and nephogram, (b) Radial deflection equivalent stress curve and nephogram, (c) Total dorsiflexion deformation curve and nephogram, (d) Dorsiflexion equivalent stress curve and nephogram

3 外固定支具尺寸优化设计

本文结果表明,外固定支具能够满足初始设 计需求,因此在满足医疗要求、加载方式不变的前 提下,可通过优化提高外固定支具抵抗变形的能 力以及实现轻量化目的。首先,进行灵敏度分析 筛选设计变量,运用正交试验设计得出外固定支 具的试验数据;接着,运用模糊优化方法建立数学 模型;最终,求解得出外固定支具的尺寸优化 结果。

3.1 筛选设计变量

对外固定支具进行结构设计,并进行动力学分析后,通过经验筛选出外固定支具重要的 8 个尺寸,分别为:手掌模块长 L_1 ,厚 W_1 ,圆弧半径 R_1 ,高 H_1 ;手臂模块总高 H_2 ,底部角度 α ;滑块高 H_3 ;球下 关节高 H_4 。通过 ANSYS 对其进行灵敏度分析,设 定外固定支具优化目标函数的优先级为:质量>变 形量>等效应力,筛选出 5 个设计变量(见图 5)。确 定外固定支具初始关键尺寸为:手掌模块 L_1 = 28 mm, W_1 = 12 mm, H_1 = 14 mm, 手臂模块 H_2 = 28 mm, $H_3 = 18$ mm_o

图 5 筛选设计变量

3.2 外固定支具正交试验设计

通过正交试验表可较全面反映出所选参数对 试验结果各项指标的影响程度,能够显著减少模型 分析次数,提高优化效率^[14]。根据桡骨远端骨折外 固定支具灵敏度分析结果,选择 5 个关键尺寸为输 入参数,其因素水平如下: $L_1 = 26 \ 28 \ 30 \ \text{mm}, W_1 =$ 11、12、13 mm, $H_1 = 13 \ 14 \ 15 \ \text{mm}, H_2 = 13 \ 14 \ 15 \ \text{mm}, H_3 = 16 \ 18 \ 20 \ \text{mm}.$ 由此就构成了1个5因素3水平的正交试验, 选用 *L*₁₅₍₃₅₎型正交表。以质量 *M*、最大变形 *U* 和最 大等效应力 σ_{max} 为输出参数,实验方案分析结果如表2所示。

表2 正交试验	ì表
---------	----

Tab. 2 The orthogonal table

试验次数	L_1/mm	W_1/mm	H_1/mm	H_2/mm	H_3/mm	M∕g	U∕ mm	$\sigma_{ m max}/{ m MPa}$
1	26	12	15	26	18	162.48	12.12	2.64
2	26	11	13	26	16	161.80	11.93	3.46
3	26	11	14	28	16	163.62	12.04	1.83
4	26	13	13	27	20	164.33	13.19	5.83
5	26	13	14	26	18	163.02	12.73	5.33
6	26	11	15	27	16	162.24	12.03	1.36
7	26	12	13	28	20	164.30	12.92	5.52
8	28	12	14	27	16	164.06	12.97	0.56
9	28	11	15	26	20	161.76	12.49	1.30
10	28	13	13	26	16	164.11	13.42	3.88
11	28	11	13	28	18	164. 58	13.01	1.74
12	30	13	15	28	16	166.35	13.88	0.48
13	30	11	14	26	20	162.79	13.32	1.16
14	30	11	13	27	18	164. 23	13.51	0.97
15	30	12	13	26	16	164.03	13.64	1.04

正交试验通常采用极差分析来判别外固定支 具各尺寸影响因素对质量以及变形的影响程度,极 差数值越大,代表对应的因素越关键,在设计过程 中越要重点关注^[15]。由极差分析结果可知,各因素 对质量和变形的影响程度均一致,重要程度依次 $W_1>L_1>H_2>H_1>H_3$ 。外固定支具质量优先于变形, 各自取均值可知,当 $L_1=26 \text{ mm}$ 时,外固定支具质量 最轻为163.112 g,变形最小为12.423 mm;当 $W_1=$ 11 mm时,外固定支具质量最轻为163 g,变形最小 为 12. 619 mm; 当 H_1 = 15 mm 时, 外固定支具质量最 轻为 163. 208 g, 变形最小为 12. 63 mm; 当 H_2 = 26 mm 时, 外固定支具质量最轻为 162. 856 g, 变形 最小为 12. 807 mm; 当 H_3 = 20 mm 时, 质量最轻为 163. 295 g, 变形为 12. 98 mm(见表 3)。综上分析可 知, 外固定支具最优尺寸参数为: L_1 = 26 mm, W_1 = 11 mm, H_1 = 15 mm, H_2 = 26 mm, H_3 = 20 mm。最大 尺寸参数为: L_1 = 20 mm, W_1 = 13 mm, H_1 = 13 mm, H_2 = 30 mm, H_3 = 16 mm。

因	素	L_1/mm	W_1/mm	H_1/mm	H_2/mm	H_3 /mm
M∕g	均值1	163.112	163.000	163. 911	162. 856	163. 739
	均值2	163. 628	163. 720	163. 372	163.715	163. 578
	均值 3	164.350	164. 453	163. 208	164.713	163. 295
	极差	1.238	1.720	0. 702	1.857	0. 444
U∕ mm	均值1	12.423	12.619	13.089	12.807	12.844
	均值 2	12.973	12.913	12.765	12.925	12. 843
	均值3	13.588	13.305	12.630	12.963	12.980
	极差	1.165	0.686	0.459	0.156	0.137

3.3 外固定支具模糊优化

表 3 极差分析结果

Tab. 3 Results of range analysis

在针对外固定支具进行优化设计的过程中发现,设计变量的取值范围以及最大应力等均可以使 用模糊手段。模糊优化数学模型与常规优化数学 模型类似,均包括目标函数、设计变量和约束条件 3个基本要素,只是其中包含有模糊因素,还需确定 隶属函数^[16]。

3.3.1 外固定支具模糊优化建模 基于以上原则 为提高外固定支具抵抗变形能力及轻量化,在保证 基本强度的前提下求得总变形最小,即求 U(x)的 最小变形,同时要保证质量最小即目标函数外固定 支具质量 minM(x)最小。约束条件主要为外固定 支具尺寸范围的限制以及最大应力的限制。由于 在球下关节处应力最大,即 σ_{max} 为球下关节最大应 力。其数学模型为:

 $\begin{cases} x = [L_1, W_1, H_1, H_2, H_3] = [sc, sh, sg, sbg, hkg] \\ \min f_1(x) = M(x) \\ \min f_2(x) = U(x) \\ \operatorname{st}: 0 \leq \sigma \leq [\sigma_{\max}] \\ 26 \leq sc \leq 30, 11 \leq sh \leq 13, 13 \leq sg \leq 15, \\ 26 \leq sbg \leq 30, 16 \leq hkg \leq 20 \end{cases}$

(3)

式中:~表示该运算含有模糊信息;sc、sh、sg、sbg、hg 为设计变量。

3.3.2 构造模糊目标集

3.3.2.1 基于模糊综合评判法确定最优水平值λ

(1)确定影响 λ 的因素集。解决模糊优化问题,是将模糊优化转化为常规优化,再用常规优化的方法来进行求解,其解法的关键是确定最优水平值λ。针对桡骨远端骨折外固定支具主要将以下几个因素作为因素集:设计水平、制造水平、材质好坏、使用条件、重要程度,根据综合评判对其进行打分。因素集和因素等级权重如表4所示。

表 4 因素集和因素等级权重

Tab. 4 Factor set and factor rank weight

田麦隹		因素等	等级权重评	价等级	
凶系朱	1	2	3	4	5
设计水平	2	6	2	0	0
制造水平	1	2	6	1	0
材质好坏	2	6	2	0	0
重要程度	6	3	1	0	0
使用条件	0	0	1	4	5

(2) 建立因素权重集。为表示各因素重要程 度,赋予一定的权数 a_i ,则 $A = \{a_1, a_2, \ldots, a_m\}$,称为 因素权重集, a_i 满足归一性和非负性。由上可得到: $A = \{0.3, 0.2, 0.3, 0.1, 0.1\}$ 。

(3)一级模糊综合评判。也称单因素评判,是 通过综合某个因素各个等级对评判对象取值影响 来处理因素模糊性。分别得出单因素评判集,从而 建立单因素评判矩阵:

	0.2	0.1	0.2	0.6	0]	
	0.6	0.2	0.6	0.3	0	
R =	0.2	0.6	0.2	0.1	0.1	(4)
	0	0.1	0	0	0.4	
	0	0	0	0	0.5	

(4) 二级模糊综合评判。B=A*R,利用集合A 中的数字与集合R中第1列的首个数字模糊相乘, 然后再与第2个数字模糊相加,以此类推,按相乘 取小,相加取大得出各数值^[17]。由上可以得到: A*R=(0.2,0.3,0.2,0.3,0.1)。评判结果归一化: B=(0.1818,0.2727,0.1718,0.2727,0.0909)。

综合评判说明,在 5 个关键因素中,设计水平 占总体 18%,制造水平大约占 27%,材料好坏占 18%,重要程度约占用 27%,使用条件 9%。利用 B 再乘以1 个矩阵 **T** = [0.2,04,0.6,0.8,1],经计算 得出最优水平值 λ = 0.563 58,约为0.56。

3.3.2.2 构造隶属函数

根据外固定支具的约束条件和模糊优化设计 的要求,选取隶属度函数为抛物型函数^[18]。以质量 为目标的隶属函数关系图为例:

$$u_{\rm D} = \begin{cases} 1, & f(x) < m \\ \left(\frac{M - f(x)}{M - m}\right)^{\frac{1}{2}}, & m < f(x) < M \\ 0, & M < f(x) \end{cases}$$
(5)

通过正交试验分析的结果,用有限元软件分别 对目标函数*f*₁和*f*₂在单目标约束的条件下进行优化 分析,可得出各子目标的最优值和最大值。

 $m_1 = \min f_1 = 159.243$ g $M_1 = \max f_1 = 166.585$ g $m_1 = \min f_2 = 11.928$ mm $M_2 = \max f_2 = 14.534$ mm 模糊目标集的隶属函数为:

$$u_{1}f_{1}(x) = \left|\frac{M_{1} - f_{1}(x)}{M_{1} - m_{1}}\right|^{\frac{1}{2}} = \left|\frac{166.585 - f_{1}(x)}{166.585 - 159.243}\right|^{\frac{1}{2}}$$
(6)
$$u_{2}f_{2}(x) = \left|\frac{M_{2} - f_{2}(x)}{M_{2} - f_{2}(x)}\right|^{\frac{1}{2}} =$$

$${}_{2}f_{2}(x) = \left| \frac{m_{2} - f_{2}(x)}{M_{2} - m_{2}} \right| = \left| \frac{14.534 - f_{2}(x)}{14.534 - 11.928} \right|^{\frac{1}{2}}$$
(7)

根据各子优化目标在整个优化中的相对重要性,利用模糊综合评判中各权重的确定方法^[19], ω_1 和 ω_2 分别为目标函数质量和变形的权重,且 ω_1 + ω_2 =1,则权重分配为 ω_1 =0.6, ω_2 =0.4。模糊目标集的隶属函数为:

$$u_{\rm D}(x) = 0.6 \left| \frac{166.585 - f_1(x)}{166.585 - 159.243} \right|^{\frac{1}{2}} + 0.4 \left| \frac{14.534 - f_2(x)}{14.534 - 11.928} \right|^{\frac{1}{2}}$$
(8)

从而原多目标模糊优化模型可转化为单目标 优化模型,其数学模型:

$$\begin{cases} \operatorname{Find} x = [L_1, W_1, H_1, H_2, H_3] = [sc, sh, sg, sbg, hkg] \\ \min u_{\mathrm{D}}(X) = 0.6 \left| \frac{166.585 - f_1(x)}{166.585 - 159.243} \right|^{\frac{1}{2}} + \\ 0.4 \left| \frac{14.534 - f_2(x)}{14.534 - 11.928} \right|^{\frac{1}{2}} \end{cases}$$
(9)
st: $0 \leq \sigma \leq [\sigma_{\max}] \\ 26 \leq sc \leq 30, 11 \leq sh \leq 13, 13 \leq sg \leq 15 \\ 26 \leq sbg \leq 30, 16 \leq hkg \leq 20 \end{cases}$

通过上述分析,采用遗传算法,经 MATLAB 优化 工具箱对外固定支具结构进行模糊优化设计。得出 关键 尺 寸 优 化 后 结 果, $L_1 = 26.746 \text{ mm}, W_1 =$ 11.828 mm, $H_1 = 15 \text{ mm}, H_2 = 26.238 \text{ mm}, H_3 = 16 \text{ mm}$ 。

表 5 外固定支具结构方案性能对比

Tab. 5 Performance comparison of wedge structure schemes of external fixator

4 结果

把求得的多目标模糊优化设计得出的设计变量的尺寸结果圆整后,输入到模型参数中,代入 ANSYS有限元分析软件中重新进行瞬态分析。结 果表明,桡偏状态下的变形和应力分布符合外固定 支具转动载荷下情况(见图 6)。

将多目标模糊优化与原模型结果进行对比。 结果表明,利用模糊优化方法进行外固定支具轻量 化的研究,可以使两个优化目标同时满足条件且达 到最优效果。相对于初始数据的有限元仿真模拟, 原始外固定支具质量下降 5%,变形下降 8%,较大 程度上减轻了外固定支具的质量,提高了结构优化 设计的效率和精度,且其刚度和强度均满足设计要 求(见表 5)。

	•	6						
方案	L_1/mm	W_1/mm	H_1/mm	H_2/mm	H_3 /mm	M∕g	U/mm	$\sigma_{ m max}/{ m MPa}$
原模型	28	12	14	28	18	165.81	13.254	0.611
模糊优化	26.7	11.8	15	26.2	16	157.31	12.235	0.724
相对改变量/%	5	2	-7	6	11	5	8	-15

5 讨论

本文分析了目前桡骨远端骨折外固定方式的 局限性,借助模块化设计思想,从骨折固定理念出 发,设计了一种桡骨远端骨折外固定支具。确定了 其固定、牵伸、活动3种工作模式,从而给予腕关节 阶段性功能锻炼。围绕外固定支具牵伸、活动模式 进行了瞬态动力学分析。结果表明:该外固定支具 在牵伸、活动模式下具有较强的刚性,质量为 165.81 g,初始设计参数在强度方面有较大的安全 余量。基于此,对外固定支具重要尺寸进行灵敏度 分析筛选出关键尺寸,以此为设计变量,以质量、最 大变形量为目标变量。通过正交试验设计分析极 差求得关键尺寸的最大最优值,通过模糊优化方法 建立了多目标尺寸优化数学模型。最后利用遗传 算法进行优化求解,得出优化后手掌模块长 $L_1 =$ 26.7 mm,厚 $W_1 = 11.8$ mm,高 $H_1 = 15$ mm,手臂模块 总高 $H_2 = 26.2$ mm, 滑块高 $H_3 = 16$ mm, 质量为 157.31 g,变形为 12.235 mm。相比原始外固定支 具质量下降 5%,变形下降 8%。在满足强度和刚度 要求前提下,能节省生产成本,验证结构设计方案 的有效性和可行性,为桡骨远端骨折外固定设计研 究提供参考依据。

本研究的局限性如下:① 因个体差异性,外固 定支具上、下夹板尺寸及形状会有所不同,目前可 充分利用3D 技术制造定制化的支具。② 本文主要 研究外固定支具牵伸、活动模式下的动力学分析和 尺寸优化设计问题。在将来的工作中,需要通过拓 扑优化进一步对结构轻量化设计,充分评价外固定 支具的工作性能。

参考文献:

- [1] MACINTYRE NJ, DEWAN N. Epidemiology of distal radius fractures and factors predicting risk and prognosis
 [J]. J Hand Ther, 2016, 29(2): 136-145.
- [2] 姜昆,陶宝琛,魏成建.小夹板治疗桡骨远端关节内骨折的 有限元分析 [J]. 医用生物力学, 2018, 33(3): 206-211.
 JIANG K, TAO BK, WEI CJ. Finite element analysis on small splint for the treatment of intra-articular fracture of distal radius [J]. J Med Biomech, 2018, 33(3): 206-211.
- [3] 尚天裕.中西医结合治疗骨折 [J].中国矫形外科杂志, 1995,2(1):70-71.
- [4] ERICKSON J, LOPEZ W, SHONUGA O, et al. Volar cortical integrity in non-operatively treated adult distal radius fractures [J]. J Hand Surgery, 2020, 25(2): 192-198.
- [5] ZHAO Y, DONG QQ, QIN WK, et al. Research of TCM synthetic rehabilitation on the recovery of wrist joint after distal radius fractures [J]. China J Orthop Trauma, 2017, 30(1): 42-46.
- [6] BLAYA F, PEDRO PS, SILVA JL, et al. Design of an orthopedic product by using additive, manufacturing technology: The Arm Splint [J]. J Med Syst, 2018, 42 (3): 1-15.
- [7] YAN W, DING M, KONG B, et al. Lightweight splint design for individualized treatment of distal radius fracture
 [J]. J Med Syst, 2019, 43(8): 1-10.
- [8] 何云涛,孔博,奚小冰,等.一种用于桡骨远端骨折的新型医用小夹板设计与评价[J].上海交通大学学报,2019,52
 (2):194-199.
- [9] 魏成建,陶宝琛,张满臣,等.动力气囊压垫纠正桡骨远端 AO C3.1型骨折残余侧方移位的三维有限元分析[J]. 医

用生物力学, 2018, 33(1): 13-17.

WEI CJ, TAO BC, ZHANG MC, *et al.* Three-dimensional finite element analysis on residual lateral displacement of distal radius AO C3. 1 fracture corrected by dynamic airbag pad [J]. J Med Biomech, 2018, 33(1): 13-17.

- [10] GUPTA A, CHATURVEDI S, BHAT AK, *et al.* Design and manufacture of customizable finger immobilizer and mallet finger splints [C]//Proceedings of 2019 International Conference on Biomedical Innovations and Applications (BIA). Varna: IEEE, 2019: 1-4.
- [11] MELLSTRAND-NAVARRO C, PETTERSSON HJ, TORNQVIST H, et al. The operative treatment of fractures of the distal radius is increasing: Results from a nationwide Swedish study [J]. Bone Joint J, 2014, 96(7): 963-969.
- [12] 萨日娜,武仪,张静. 一种用于手腕骨折的康复装置:中国, CN 111388171 A[P]. 2020-07-10.
- [13] 周声旺. 基于微动理论和轴向牵引刺激的新型可塑性夹板 设计研究[D]. 上海:上海交通大学, 2016.
- [14] WANG Z, ZHANG T, YU T, et al. Assessment and optimization of grinding process on AISI 1045 steel in terms of green manufacturing using orthogonal experimental design and grey relational analysis [J]. J Clean Prod, 2020, 253: 119896.
- [15] JIAQIANG E, Han D, QIU A, et al. Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system [J]. Appl Therm Eng, 2018, 132: 508-520.
- [16] GORZAŁCZANY MB, RUDZIŃSKI F. Interpretable and accurate medical data classification: A multi-objective genetic-fuzzy optimization approach [J]. Expert Syst Appl, 2017, 71: 26-39.
- [17] GARG H, RANI M, SHARMA SP, *et al.* Intuitionistic fuzzy optimization technique for solving multi-objective reliability optimization problems in interval environment [J]. Expert Syst Appl, 2014, 41(7): 3157-3167.
- [18] GUO S, ZHAO H. Fuzzy best-worst multi-criteria decisionmaking method and its applications [J]. Knowl-Based Syst, 2017, 121(4): 23-31.
- [19] SIDDIQUI ZA, TYAGI K. Study on service selection effort estimation in service oriented architecture-based applications powered by information entropy weight fuzzy comprehensive evaluation model [J]. IET Softw, 2018, 12 (2): 76-84.