文章编号:1004-7220(2024)03-0489-08

脑卒中患者运动过程中动力学特征的智能预测

张 楠^{1a,2}, 孟庆华^{1b,1e,2}, 鲍春雨^{1a,2}, 周鲁星^{1b,2}, 崔帅琦^{1b,2}

(1. 天津体育学院 a 社会体育学院,b 运动健康学院,c 体育经济与管理学院,天津 301617; 2. 天津市运动损伤与康复虚拟仿真实验教学中心,天津 301617)

摘要:目的 使用主成分分析(principal component analysis, PCA)和反向传播(back propagation, BP)神经网络预测脑 卒中患者行走时患侧髋、膝、踝的关节力矩。方法 30 例脑卒中患者通过 8 镜头 Qualisys 红外光点高速运动捕捉 系统和 Kistler 三维测力台同步采集运动学和动力学数据。通过 OpenSim 计算脑卒中患者髋、膝、踝患侧关节力矩, 采用 PCA 筛选累积贡献率达到 99% 的初始变量,采用标准均方根误差(normalized root mean squared error, NRMSE)、均方根误差(root mean squared error, RMSE)、平均绝对百分比误差(mean absolute percentage error, MAPE)和平均绝对误差(mean absolute error, MAE)、*R*² 作为 PCA-BP 模型的评价指标。使用肯德尔 W 系数评价计算关节力矩与预测力矩之间的一致性。结果 PCA 数据显示躯干、骨盆、患侧髋、膝和踝关节在 x、y、z 轴(矢状、冠状、垂直轴)对患侧髋、膝、踝关节力矩具有显著影响。预测值与测量值间 NRMSE 为 5.14% ~8.86%, RMSE 为 0.184 ~ 0.371, MAPE 为 3.5% ~4.0%, MAE 为 0.143 ~ 0.248, *R*² 为 0.998 ~ 0.999。结论 建立的 PCA-BP 模型可准确预测脑卒中患者行走时的髋膝踝关节力矩,显著缩短测量时间。在脑卒中患者的步态分析中,本模型可代替传统的关节力矩计算,为获得脑卒中患者生物力学数据提供新途径,以及为脑卒中患者临床治疗提供有效的方法。关键词:数学模型;脑卒中,主成分分析;反向传播神经网络;关节力矩

DOI: 10. 16156/j. 1004-7220. 2024. 03. 017

Intelligent Prediction for Dynamic Characteristics of Stroke Patients During Exercise

ZHANG Nan^{1a,2}, MENG Qinghua^{1b,1c,2}, BAO Chunyu^{1a,2}, ZHOU Luxing^{1b,2}, CUI Shuaiqi^{1b,2} (*1a. School of Social Sports, 1b. School of Sports and Health, 1c. School of Sports Economics and Management, Tianjin Institute of Sports, Tianjin 301617, China; 2. Tianjin Sports Injury and Rehabilitation Virtual Simulation Experimental Teaching Center, Tianjin 301617, China*)

Abstract: Objective To predict the torque on the affected side of the hip, knee, and ankle joints in stroke patients during walking using principal component analysis (PCA) and backpropagation (BP) neural networks. **Methods** Kinematic and dynamic data from 30 stroke patients were synchronously collected using an 8-lens Qualisys infrared point high-speed motion capture system and Kistler three-dimensional (3D) force measurement platform. The torques of the hip, knee, and ankle joints in the stroke patients were calculated using OpenSim, and the initial variables with a cumulative contribution rate of 99% were screened using PCA. The normalized root mean square error (NRMSE), root mean square error (RMSE), mean absolute percentage error (MAPE),

收稿日期:2023-10-08;修回日期:2023-11-20

基金项目:国家自然科学基金项目(11372223,11102135),天津市自然科学基金项目(17JCZDJC36000,18JCZDJC35900),天津市研究生 创新项目(2022SKYZ318,2022SKYZ319)

通信作者:孟庆华,教授,E-mail:745112962@qq.com

mean absolute error (MAE), and R^2 were used as evaluation indicators for the PCA-BP model. The consistency between the calculated joint torque and predicted torque was evaluated using Kendall's *W* coefficient. **Results** PCA data showed that the trunk, pelvis, and affected sides of the hip, knee, and ankle joints had a significant impact on the torque of the affected sides of the hip, knee, and ankle joints on the *x*, *y*, and *z* axes (sagittal, coronal, and vertical axes, respectively). The NRMSE between predicted and measured values was 5.14% – 8.86%, RMSE was 0.184–0.371, MAPE was 3.5% –4.0%, MAE was 0.143–0.248, and R^2 was 0.998–0.999. **Conclusions** The established PCA-BP model can accurately predict the torque of the hip, knee, and ankle joints in stroke patients during walking, with a significantly shortened measurement time. This model can replace traditional joint torque calculation in the gait analysis of stroke patients, provides a new approach to obtaining biomechanical data of stroke patients, and is an effective method for the clinical treatment of stroke patients. **Key words**: mathematical model; stroke; principal component analysis (PCA); neural networks; joint torque

脑卒中是脑血管疾病发展到一定程度引起的。 脑卒中的发病率、致残率和死亡率高,已成为当今 世界严重危害人类健康和生命安全的重大疾病^[1]。 从生物力学角度对脑卒中患者进行干预治疗是目 前治疗脑卒中患者的主流方向之一,关节力矩为脑 卒中患者的临床决策提供了有价值的信息^[2]。同 时,下肢关节力矩在对患者的评估、监测和治疗意 义重大^[3]。下肢关节力矩在研究患者步行功能方 面具有巨大的潜力,可以在脑卒中患者施加关节运 动时提供有关肌肉行为的参考^[4]。研究表明,关节 力矩在术前和术后的分析中有所不同,特别是矢状 面下肢的关节力矩和冠状面髋关节力矩的分析,对 脑卒中治疗的决策过程有显著影响^[5]。

临床步态分析中想要获得关节力矩非常困难. 需要使用逆动力学模型通过地面反作用力(ground reaction force, GRF) 计算^[6]。周鲁星等^[7]利用8镜 头 Qualisys 红外光点高速运动捕捉系统和 Kistler 三 维测力台测量脑卒中患者的步态数据,并通过 Visual 3D 计算分析脑卒中患者踝关节和膝关节力 矩。本文采用 OpenSim 计算关节力矩。相较于 Visual 3D, OpenSim 可以给患者制定个性化的模型。 随着机器学习技术的发展,使用机器学习从关节角 度预测脑卒中患者的关节力矩,将会成为未来研究 其关节力矩的主要方向。但是,目前针对脑卒中患 者进行的此类研究还鲜有报道。机器学习技术在 生物力学领域的应用已经相当成熟,有学者通过使 用机器学习来研究神经-肌肉疾病患者的运动生物 力学^[8]:机器学习先进的计算能力为心血管建模提 供了新的研究机会^[9]:同时,机器学习可用于预测

GRF、关节力矩^[10-17]。本文希望开发出通过机器学 习技术预测脑卒中患者关节力矩的方法,在未来可 以取代脑卒中传统的力矩测试方法。

本文通过 8 镜头 Qualisys 红外光点高速运动捕 捉系统和 Kistler 三维测力台同步采集运动学数据和 vGRF。通 过 主 成 分 分 析 (principal component analysis, PCA) 筛 选 后,利 用 反 向 传 播 (back propagation, BP)神经网络构建脑卒中患者下肢关节 角度与关节力矩的非线性关系,建立基于 PCA-BP 预 测脑卒中患者患侧髋、膝、踝关节力矩的方法。本研 究假设:脑卒中患者预测模型的标准均方根误差 (normalized root mean squared error, NRMSE) $\leq 12\%$, 均方根误差(root mean squared error, RMSE) ≤ 0.35 , 平均绝对百分比误差(mean absolute percentage error, MAPE) $\leq 4\%$,平均绝对误差(mean absolute error, MAE) ≤ 0.30 , $R^2 \geq 0.99$;且预测模型能够很好 完成预测。

1 研究对象与方法

1.1 研究对象

共纳入中国人民解放军联勤保障部队天津康 复疗养中心就诊的 30 名脑卒中患者,年龄(61.5± 3.5)岁,体质量(68.2±2.4)kg,身高(167.2± 3.4)cm。本研究获得天津体育学院伦理会批准。 纳入标准:① Brunnstrom 分期在四期;② 卒中后超 过6个月,且没有认知障碍,能理解本实验的过程; ③ 能独立行走 20 m,无其他重大疾病;④ 能够签署 受试者知情同意书。

1.2 数据采集

利用 Qualisys 三维动作捕捉系统、Kistler 三维

测力台对 30 名脑卒中患者在步行过程中的基本步态、运动学和动力学参数进行采集。测试过程如下:①在实验室放置 10 个支架和摄像头,让患者在测试前换上统一的服装和鞋,将 20 个解剖标记反光球粘贴在下肢上,带有 4 个反光球的 4 个固定板分别被固定在大腿、小腿两侧;② 让患者在固定距离内行走,并确保在行走中两脚分别踏在前后放置的两块测力台上。

1.3 数据处理

首先,将 Qualisys 动捕系统中的数据输出为 C3D 格式的文件。随后,在通过 MATLAB 2017b 软 件将 C3D 文件转换为 trc(标志点数据)和 mot(GRF 数据)格式的文件。最后,在 OpenSim 4.3 软件中使 用模型 Gait2354_Simbody 对其进行缩放(scale)、逆 向运动学(inverse kinematics, IK)、逆向动力学 (Inverse Dynamics, ID)操作,计算相关的运动学与 动力学数据。将计算所得运动学和动力学数据用 于创建脑卒中患者的运动学与动力学数据库,建立 数据集。随机抽取 10 名脑卒中患者(100 个单步) 为测试集,其余 20 人(200 个单步)为训练集,随机 抽取训练集中的 1/4(50 个单步)为验证集。

图 1 所示进行 IK 后脑卒中患者步行姿态展示。 运动学和动力学数据使用 MATALB 2017b 中四阶 巴特沃思低通滤波器滤波,截止频率为 6 Hz^[10]。

Fig. 1 Schematic diagram of gait simulation results for hemiplegic patients

1.4 数据统计

所得数据用(平均值±标准差)表示^[10]。计算 脑卒中患者步行时通过 OpenSim 仿真出的患侧髋、 膝、踝关节力矩与数学模型预测出的患侧髋、膝、踝 关节力矩之间的 NRMSE、RMSE、MAPE、MAE、R², 关节力矩采用受试者自身的体质量进行标准化。

使用肯德尔 W(Kendall's W)系数评价预测髋、 膝、踝关节力矩与 OpenSim 所算之间的一致性。使

用 SPSS 27.0 进行数据汇总与统计分析。

2 建立 PCA-BP 模型

2.1 主成分分析

PCA 是一种数据降维技术。它用较少数量的 不相关的主成分(即衍生变量)代替大量的原始相 关变量,同时尽可能多地保留原始变量数据集中存 在的内部信息^[10]。算法的详细描述如下:

排除掉异常数据后,总数据集有 300 个样本,每 个样本用 24 维变量表示(24 维变量包括躯干、盆 骨、患侧髋膝踝、健侧髋膝踝 x、y、z 轴),即 X₁, X₂,…,X₂₄。因此,原始数据矩阵可以表示为:

$$\boldsymbol{X} = X_1 X_2 \cdots X_{24} = (X_{ij})_{30024}$$

PCA 由以下步骤组成:

为了消除不同维数的影响,需要对原始变量进 行标准化,并按

$$\mathbf{y}_{ij} = \frac{2(X_{ij} - \min_{1 \le k \le n} \{X_{kj}\})}{\max_{1 \le k \le n} \{X_{kj}\} - \min_{1 \le k \le n} \{X_{kj}\}} - 1 \quad (1)$$

进行变换,然后计算协方差矩阵,即标准化矩阵的 相关系数矩阵,或者直接计算原始变量的相关系 数矩阵,因为标准化前后变量的相关系数矩阵 不变。

获得的标准化矩阵如下:

$$\mathbf{Y} = (X_1 X_2 \cdots X_p) = (y_{ij})_{np} = \begin{bmatrix} y_{11} & \cdots & y_{1p} \\ \vdots & \vdots & \vdots \\ y_{n1} & \cdots & y_{np} \end{bmatrix}$$
(2)

然后计算相关系数矩阵

$$\boldsymbol{R} = \begin{bmatrix} r_{11} & \cdots & r_{124} \\ \vdots & \vdots & \vdots \\ r_{3001} & \cdots & r_{30024} \end{bmatrix}$$
(3)

$$\vec{x} \oplus : \mathbf{r}_{ij} = \frac{\sum_{k=1}^{300} (y_{ki} - \overline{y_i}) (y_{kj} - \overline{y_i})}{\sqrt{\sum_{k=1}^{300} (y_{ki} - \overline{y_i})^2 \sum_{k=1}^{300} (y_{kj} - \overline{y_j})^2}} (i,j)$$

 $1\,,\!2\,,\cdots,\!p$) $_{\circ}$

计算式(3)中矩阵 **R** 的特征值及对应的特征向量。首先,求解特征方程 $|\lambda_1 - R| = 0$ 的特征根 λ_i (*i* = 1,2,...,24)并按大小顺序排列, $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_{24}$; 然后,求出特征值对应的特征向量 e_i 。

计算主成分的贡献率和累积贡献率,然后根据 累积贡献率提取 m 个主成分:

方差贡献率 =
$$\frac{\lambda_i}{\sum_{i=1}^{24} \lambda_i} \times 100\%$$
, (4)
 $i = 1, 2, \dots, 24$
累积贡献率 = $\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{24} \lambda_i} \times 100\%$, (5)
 $k = 1, 2, \dots, 24$

脑卒中患者髋、膝、踝力矩的影响因素之间存 在很强的相关性。如果直接将这 24 个影响因素作 为 BP 神经网络的输入,输入变量太多,而且它们之 间有很强的相关性,会使神经网络结构复杂,网络 训练强度加大,训练容易陷入局部极小值点,最终 导致泛化能力差。本文通过 PCA 来解决上述问题。 采用 PCA 对脑卒中患者髋、膝、踝力矩的影响因素 进行降维,消除各因素之间的相关性。然后,将得 到的主成分作为 BP 神经网络的输入向量。累积贡 献率设为 99%,其结果含有 15 主成分;建立矩阵 *X*300×15 输入到 BP 神经网络中。

2.2 构建 BP 神经网络

BP 神经网络是一种多层前馈网络,如图 2 所示。

图 2 BP 神经网络结构

Fig. 2 BP neural network structure

注: input = $\{X_1, X_2, \dots, X_{15}, \}, \{X_1, X_2, \dots, X_{15}\}$ 为脑卒 中患者下肢运动学数据; Y_i 为 OpenSim 所算的患侧髋、膝、 踝力矩值; O_i 为预测的患侧髋、膝、踝力矩值; $\omega_{ij} = \omega_{jk}$ 分 别为隐含层与输出层对应的权重^[9]。

Tansig 函数作为激活函数,即

$$f(X) = \frac{2}{1 + e^{-X}}$$
(6)

$$H_j = f(\sum_{i=1}^n \omega_{ij} X_i + a_j) \tag{7}$$

(2) 计算预测输出 0

$$O_{i} = \sum_{j=1}^{i} H_{j} \omega_{jk} + b_{k}$$
 (8)

式中: *l* 为隐含层节点数; *f* 为隐含层的激活函数。 (3) 计算误差 *e*

 $e_k = Y_i - O_i \tag{9}$

根据误差 e 反向传播更新网络连接权重 ω_{ij} 与 ω_{jk} :

$$\boldsymbol{\omega}_{ij} = \boldsymbol{\omega}_{ij} + \eta H_j (1 - H_j) X(i) \sum_{k=1}^m \boldsymbol{\omega}_{ij} \boldsymbol{e}_k \quad (10)$$

$$\omega_{jk} = \omega_{jk} + \eta H_j e_k \tag{11}$$

式中:η为学习速率。

为了评价脑卒中患者步行时髋、膝、踝力矩预测的效果,选择 NRMSE、RMSE、MAPE、MAE 和 R² 作为预测结果的评价指标^[12]:

NRMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (O_i - Y_i)^2} / \overline{Y_i}$$
 (12)

RMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (O_i - Y_i)^2}$$
 (13)

MAPE =
$$\frac{1}{N} \sum_{i=1}^{N} \left| \frac{Y_i - O_i}{Y_i} \right| \times 100\%$$
 (14)

MAE =
$$\frac{1}{N} \sum_{i=1}^{N} |Y_i - O_i| \times 100\%$$
 (15)

$$R^{2} = 1 - \frac{\sum_{i} (O_{i} - Y_{i})^{2}}{\sum_{i} (Y_{i} - \overline{Y})^{2}}$$
(16)

式中: \bar{Y}_i 为同一组所有受试者的实验关节力矩的平均值; Y_i 为 OpenSim 计算力矩; O_i 为预测力矩; N 为 预测项目的数量。

算法参数设置如下:训练次数为1200次,学习 速率为0.01,训练目标最小误差为0.0001。当误 差满足实验要求或者为最小值时,可以停止训练。 PCA-BP预测模型如图3所示。

3 结果与分析

3.1 PCA 结果

经过 PCA 筛选累积贡献率达到 99% 的初始变量, 筛选结果显示,躯干、骨盆、患侧髋、膝和踝关节在 x、y、 z 轴对患侧髋膝踝关节力矩具有显著影响(见表 1)。

(1) 计算隐含层输出 H

图 3 PAC-BP 预测模型

Fig. 3 PAC-BP predictive model

表1 PCA 结果

Tab. 1 PCA results

			古羊舌盐	罗和香盐
部位	方向	特征值	刀左贝臥	杀你贝瞅
	2413		率/%	率/%
躯干	x	7.23	25.02	25.02
	у	6.45	22.32	47.34
	z	3.31	11.46	58.80
盆骨	x	2.23	7.72	66.50
	у	2.01	6.96	73.48
	z	1.11	3.84	77.32
髋关节	x	1.02	3. 53	80. 85
	у	0.96	3.32	84.17
	z	0.85	2.94	87.11
膝关节	x	0.75	2.60	89.71
	у	0.64	2.22	91.93
	z	0.51	1.77	93.70
踝关节	x	0.48	1.66	95.36
	у	0.65	2.25	97.61
	z	0.47	1.63	99.24

注:x、y、z分别为矢状、冠状、垂直轴。下同。

3.2 BP 神经网络预测结果

分别对患侧髋、膝、踝关节力矩进行预测。结 果表明,对于脑卒中患者,预测所有关节力矩的平 均 NRMSE $\leq 0.0886 \pm 0.001$ 、平均 RMSE $\leq 0.317 \pm$ 0.008、平均 MAPE $\leq 0.040 \pm 0.006$ 、平均 MAE \leq 0.248 ± 0.004 ,患侧膝关节 x 轴方向上的力矩是预 测最成功的关节力矩, NRMSE 为 0.0514 ± 0.004 。 患侧踝关节 x 轴方向上的力矩是预测成功率最低的 关节力矩, NRMSE 为 0.088 6±0.001。同时, 回归 值 R 代表预测输出和目标输出之间的相关性, R 越 接近 1, 表示预测和输出数据之间的关系越密切; R 越接近 0, 表示预测和输出数据之间的关系随机性 越大。结果显示, PCA-BP 模型中的训练集、测试 集、验证集的 R² 都大于 0.998, 具有非常好的拟合 效果(见表 2)。

将本文所建 PCA-BP 模型与文献报道的其他模型精度进行对比(见表 3)。王冬梅等^[10] 通过 PAC-WNN 模型预测步行中 vGRF,其模型的 NRMSE 为 6.20%~8.42%, RMSE 为 0.18~0.28, MAE 为 0.14~0.23, 与本文结果非常相近。Wouda 等^[11] 通过神经网络预测 vGRF,其 RMSE 为 0.26~0.32;相比之下,本文的结果更加准确。Liu 等^[19] 通过使用 PSO-GRA-BPNN 模型预测二手车价格,其 MAPE 为 3.963%~4%、MAE 为 0.425~0.475、R² 为 0.984~0.985;相比之下,本文的 PCA-BP 模型较 PSO-GRA-BPNN 模型更加精确。

3.3 肯德尔 W 结果

肯德尔 W 系数 \geq 0.7 被认为是强相关性。本 文发现,肯德尔 W 系数 \geq 0.935, $P \leq$ 0.001,说明 OpenSim 计算力矩与预测力矩之间具有显著的一致 性(见图 4)。

3.4 预测力矩与计算力矩结果

本文发现,脑卒中患者行走时膝关节 X 轴方向 的力矩预测最好,其 NRMSE 为 5.14%;踝关节 Z 轴 方向力矩预测最差,NRMSE 为 8.79%(见图 5)。

4 讨论

由于关节力矩在脑卒中患者康复时是有价值 的评估参数并且难以通过实验捕获,本文使用 PCA-BP 模型通过关节角度预测脑卒中患者在步态期间 的髋、膝、踝力矩。结果发现,NRMSE ≤ 0.088 6± 0.001、RMSE $\leq 0.317 \pm 0.008$ 、MAPE $\leq 0.040 \pm$ 0.006、MAE $\leq 0.248 \pm 0.004$ 、 $R^2 \geq 0.998$,肯德尔 W 系数 ≥ 0.935 。Ardestani 等^[20]使用小波神经网络基 于 EMG 和 GRF 分量预测迟发性运动障碍(tardive dyskinesia, TD)受试者的关节力矩,结果显示 NRMSE $\leq 5.69\%$,使用 GRF 作为输入信息将增加预 测成功率,因为 GRF 和关节力矩是在生物力学上耦

表 2 PCA-BP 模型性能评估

Tab. 2 Performance evaluation of PCA-BP model

指标	关节	方向	NRMSE	RMSE	MAPE	MAE	R^2
训练集	髋	x	0.062 ± 0.004	0.270±0.008	0.040±0.006	0.174±0.004	0. 998
		у	0.063 ± 0.003	0.271 ± 0.007	0.039 ± 0.005	0.176 ± 0.004	0.999
		z	0.065 ± 0.008	0.272 ± 0.007	0.039 ± 0.006	0.179 ± 0.003	0.998
	膝	x	0.053 ± 0.004	0.192±0.005	0.036 ± 0.005	0.165 ± 0.004	0.998
		y	0.053 ± 0.006	0.186±0.005	0.035 ± 0.004	0.166 ± 0.005	0.999
		z	0.057 ± 0.009	0.193±0.006	0.037 ± 0.005	0.168 ± 0.004	0.998
	踝	x	0.088 ± 0.001	0.301±0.009	0.039 ± 0.006	0.240 ± 0.003	0.999
		y	0.085 ± 0.005	0.311±0.009	0.038 ± 0.004	0.248 ± 0.004	0.998
		z	0.087 ± 0.003	0.317±0.008	0.039±0.005	0.245±0.005	0.998
测试集	髋	x	0.065 ± 0.004	0.274 ± 0.008	0.036±0.005	0.176 ± 0.007	0.999
		y	0.061 ± 0.002	0.271±0.007	0.036±0.006	0.178±0.005	0.998
		z	0.067 ± 0.001	0.275 ± 0.005	0.039 ± 0.007	0.175 ± 0.004	0.999
	膝	x	0.052 ± 0.004	0.184±0.006	0.036 ± 0.008	0.164±0.002	0.998
		y	0.054 ± 0.006	0.188±0.005	0.035±0.008	0.166±0.003	0.998
		z	0.056 ± 0.009	0.189±0.005	0.036±0.005	0.165 ± 0.004	0.999
	踝	x	0.084 ± 0.001	0.300 ± 0.006	0.037 ± 0.008	0.230 ± 0.005	0.998
		y	0.086 ± 0.005	0.310 ± 0.007	0.037 ± 0.006	0.241±0.006	0.999
		z	0.088 ± 0.003	0.318±0.008	0.038 ± 0.007	0.245 ± 0.005	0.998
验证集	髋	x	0.070 ± 0.004	0.291±0.006	0.036±0.005	0.179±0.005	0.998
		y	0.068 ± 0.004	0.276 ± 0.006	0.036±0.005	0.168 ± 0.004	0.999
		z	0.068 ± 0.001	0.274 ± 0.007	0.035 ± 0.006	0.167 ± 0.006	0.998
	膝	x	0.051 ± 0.004	0.184 ± 0.007	0.035 ± 0.005	0.142±0.005	0.999
		y	0.053 ± 0.006	0.190±0.006	0.035 ± 0.004	0.143±0.006	0.998
		z	0.054 ± 0.009	0.192±0.005	0.035 ± 0.005	0.146±0.006	0.998
	踝	x	0.085 ± 0.001	0.299 ± 0.008	0.038 ± 0.006	0.223±0.005	0.999
		у	0.086 ± 0.004	0.305 ± 0.006	0.037 ± 0.008	0.224 ± 0.006	0.998
		z	0.087±0.001	0.312±0.007	0.037±0.007	0.216±0.004	0.998

表 3 PCA-BP 模型与其他模型精度对比结果

Tab. 3 Comparison of precision results between PCA-BP model and other models

模型	NRMSE/%	RMSE	MAPE/%	MAE	R^2
PCA-BP 模型	5.14~8.86	0. 184~0. 371	3.5~4.0	0. 143~0. 248	0.998~0.999
PCA-WNN ^[10] 模型	6.20~8.42	0. 18~0. 28	*	0. 14~0. 23	*
Wouda 等 ^[11] 模型	*	0.26~0.32	*	*	*
Ngoh 等 ^[16] 模型	*	0.015~0.017	*	*	*
PSO-GRA-BPNN 模型 ^[19]	*	*	3.963~4	0.425~0.475	0.984~0.985
Ozates 等 ^[14] 模型	8.58~18.02	*	*	*	*

注:*表示该文献中未提到的验证指标。

合的。因此,在计算关节力矩时,GRF 被认为是金标准。然而,本文只有关节角度作为输入,这些关节角度在常规步态分析中很容易获得,不需要使用诸如三维测力板等昂贵的设备。

研究认为,更靠近地面关节的力矩预测将比远

离地面的关节更加精确^[8]。这是因为基于逆向动 力学的关节力矩计算是从下到上逐步进行,导致计 算中的累积误差,而本研究中并不可完全观察到上 述结果。本文发现,脑卒中患者预测力矩误差最低 的是膝关节力矩。这可能是 OpenSim 本身在计算

torque in stroke patients

关节力矩中产生的一定误差所导致。OpenSim本身 在进行 IK、ID 时会产生一定的误差,这些误差都属 于正常范围内。同时,由于标志点错位或软组织伪 影导致的运动学数据记录不准确,可能也会导致关 节力矩在计算过程中产生误差。此外,脑卒中患者 由于使用辅助设备或非常短的步幅长度,其 GRF 不能被正确测量。本研究结果将有助于脑卒中患 者的步态分析,减少实验室工作量,消除对复杂的 肌肉骨骼模型计算关节力矩的需要,通过提供脑 卒中患者的关节力矩来帮助临床医生进行治疗方 案。

本研究具有一定的局限性:①本模型的样本量 较少,在未来研究中会继续收集更多脑卒中患者的 运动学数据;②运动学数据仅包括躯干和下肢髋、 膝、踝角度,然而来自上肢的进一步运动学数据可 以提供有价值的信息,从而改善 PCA-BP 模型的预 测精度;③本模型仅针对于脑卒中患者,研究对象 不包括脑瘫和四肢瘫痪的受试者;④本模型仅通过 PAC 进行降维和 BP 神经网络进行预测,在未来可 以通过其他方法进行降维,例如通过灰色关联分析 (grey relation analysis, GRA)^[18]和通过小波神经网 络进行预测。

本研究结果表明,基于运动学预测关节力矩的 机器学习技术是一种替代技术,能够在对脑卒中患 者进行步态分析时代替传统关节力矩计算。

Fig. 5 Curves of predicted and calculated torques for lower limbs (a) Knee joint, (b) Hip joint, (c) Ankle joint

5 结论

本文通过 OpenSim 软件计算脑卒中患者步行时的 24 个运动学数据,之后通过 PCA 降维,将 15 个主成分指标输入 BP 神经网络中进行脑卒中患 者髋、膝、踝力矩的预测。结果表明,PCA-BP 模型 具有较高的准确性。本模型能够在对脑卒中患者 进行步态分析时代替传统关节力矩计算,为获得脑 卒中患者生物力学提供新的途径,帮助脑卒中患者 临床治疗提供有效的方法。

利益冲突声明:无。

作者贡献声明:张楠负责数据收集、统计分析 和论文撰写;周鲁星、崔帅琦负责协助数据收集和 整理;孟庆华、鲍春雨负责论文审校。

参考文献:

- [1] SKVORTSOV DV, KAURKIN SN, IVANOVA GE. A study of biofeedback gait training in cerebral stroke patients in the early recovery phase with stance phase as target parameter [J]. Sensors, 2021, 21(21): 7217.
- [2] KIM WS, KIM MJ. Individual joint contribution to body weight support in the affected lower limb during walking in post-stroke hemiplegia [J]. Top Stroke Rehabil, 2017, 24 (3): 170-176.
- [3] DARYABOR A, YAMAMOTO S, MOTOJIMA N, et al. Therapeutic effect of gait training with two types of anklefoot orthoses on the gait of the stroke patients in the recovery phase [J]. Turk J Ph Med Rehab, 2022, 68(2): 175.
- [4] BETSCHART M, MCFAYDEN BJ, NADEAU S. Lower limb joint moments on the fast belt contribute to a reduction of step length asymmetry over ground after split-belt treadmill training in stroke: A pilot study [J]. Physiother Theor Pr, 2020, 36(9): 989-999.
- [5] MAO YR, WU XQ, ZHAO JL, *et al.* The crucial changes of sit-to-stand phases in subacute stroke survivors identified by movement decomposition analysis [J]. Front Neurol, 2018(9): 185.
- [6] WINTER DA. Biomechanics and motor control of human movement[M]. USA: John Wiley &Sons, 2009.
- [7] 周鲁星,孟庆华,刘文红,等. 偏瘫患者以不同步态模式通过障碍物的生物力学特征对比分析[J]. 医用生物力学,2022,37(5):805-811.
 ZHOU LX, MENG QH, LIU WH, *et al.* Comparative analysis of biomechanical characteristics in hemiplegic patients passing through obstacles [J]. J Med Biomech, 2022, 37(5):805-811.
- [8] HALILAJ E, RAJAGOPAL A, FITERAU M, et al. Machine

learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities [J]. J Biomech, 2018(81): 1-11.

- PAVARINO L, ROZZA G, SCACCHI S, et al. Advances in cardiovascular modeling and simulation [J]. J Biomech, 2022, 38(9): e3631.
- [10] 王冬梅,郭文霞,袁书芳,等. 基于主成分分析和小波神经 网络预测跑步中垂直地面反作用力[J]. 医用生物力学, 2022, 37(4): 706-712.
 WANG DM, GUO WX, YUAN SF, *et al.* Predicting vertical ground reaction force during treadmill running using principal component analysis and wavelet neural network [J]. J Med Biomech, 2022, 37(4): 706-712.
- WOUDA FJ, GIUBERTI M, BELLUSCI G, et al. Estimation of vertical ground reaction forces and sagittal knee kinematics during running using three inertial sensors
 [J]. Front Physiol, 2018(9): 218.
- [12] HE F, ZHANG L. Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network [J]. J Process Contr, 2018 (66): 51-58.
- [13] SEUNG EO, AHNRYUL C, MUNN JH. Prediction of ground reaction forces during gait based on kinematics and a neural network model [J]. J Biomech, 2013, 46(14): 2372-2380.
- [14] OZATES ME, KARABULUT D, SALAM F, et al. Machine learning-based prediction of joint moments based on kinematics in patients with cerebral palsy[J]. J Biomech, 2023(155): 111668.
- [15] MANSOUR M, SERBEST K, KUTLU M, et al. Estimation of lower limb joint moments based on the inverse dynamics approach: A comparison of machine learning algorithms for rapid estimation [J/OL]. Med Biol Eng Comput, 2023, doi: 10.1007/s11517-023-02890-3.
- [16] NGOH KJ, GOUWANDA D, GOPALAI AA, et al. Estimation of vertical ground reaction force during running using neural network model and uniaxial accelerometer [J]. J Biomech, 2018(76): 269-273.
- [17] ALTAI Z, BOUKHENNOUFA I, ZHAI X, et al. Performance of multiple neural networks in predicting lower limb joint moments using wearable sensors [J]. Front Bioeng Biotechnol, 2023(11): 1215770.
- [18] 梁旺东,王子龙.基于灰色关联选取特征向量的 BP 神经网 络岩相识别——以X油田A区部分井为例[J].北京石油化 工学院学报,2022,30(2):24-29.
- [19] LIU E, LI J, ZHENG A, et al. Research on the prediction model of the used car price in view of the PSO-GRA-BP neural network [J]. Sustainability, 2022, 14(15): 8993.
- [20] ARDESTANI MM, ZHANG X, WANG L, et al. Human lower extremity joint moment prediction: A wavelet neural network approach [J]. Expert Syst Appl, 2014, 41(9): 4422-4433.