Abstract:Objective As a new graft biomaterial for tissue engineering, small-intestinal submucosa (SIS) has an excellent biomechanical property. This study aims to investigate an ideal method for crosslinking porcine small-intestinal submucosa. Methods Stabilizing porcine SIS by Glutaraldehyde(GA) and photofixing samples from the same animal with methylene blue, then testing them together with original samples by material test machine. Data were obtained and analyzed, including ultimate tensile stress (σ(subscript max)), breaking strain (ε(subscript m)), and modulus of elasticity(E) under 0.3MPa stress. Results The ultimate tensile stress of three groups are respectively 6.01±1.43、6.96±0.93 and 12.94±2.03MPa. Samples following GA treatment improve correspondingly, but stiffness of the tissue is increased. Intensity of samples following photofixing with methylene blue improve slightly, and flexility improve. Conclusion This study stabilized porcine SIS by GA and methylene blue for the first time, and through comparing their biomechanical properties of uniaxial tensility, it was testified that the method of photooxidation shall be developed as a valid treatment to crosslink SIS.