Abstract:Objective To observe the stress distribution of maxillary first molar alveolar bone under different orthodontic forces using finite element model. Method The finite element model was built by using advanced 3-dimensional laser scanning, comprising a maxillary first molar, periodontal ligament, alveolar bone, and a buccal tube. Different loads were applied at a point of the buccal tube and its stress of alveolar bone was analyzed. Result With a simple horizontal or vertical force, the stress pattern in the alveolar bone showed high concentration at the cervical level or furcation level. When the maxillary first molar was moving bodily, the stress of alveolar bone was uniform and comparatively small. Conclusions When the tooth obtained bodily movement, the stress of alveolar bone was uniform and low, which displays that the bodily movement profits the healthy of the alveolar bone. Since the biggest stress of the maxillary first molar alveolar bone was in cervial region or furcation level, the changes of these regions should be observed carefully