Abstract:Objective To investigate the design approaches and manufacturing techniques for the calibration system of side impact dummy neck. Method The ES-2 side impact dummy neck was selected as the research subject and a set of calibration system of ES 2 side impact dummy neck was developed in this experiment according to the pendulum impact theory, and the new design approaches and new manufacturing techniques suitable for the present industrial conditions in China were created to establish its two key components: the pendulum device and the head-neck flexion angle measurement device. The optimal designs for the quality distribution and inertia moment distribution of the whole pendulum were also carried out to assure the pendulum initial velocity and the pendulum impact velocity time curve during the pendulum absorber impact, while optimal designs for three angle sensors and the complex stereoscopically dependent relationship among those three sensors were carried out to assure the reliability of the head neck flexion angle measurement device. Correspondingly, a total of six calibration tests were carried out to validate this calibration system in terms of the technical requirements of ECE R95. Results The pendulum initial velocity of 3.36~3.48 m/s and the pendulum impact velocity time curve during the pendulum absorber impact, which were generated by the pendulum device in this calibration system of ES 2 side impact dummy neck, were in accordance with the ECE R95. Meanwhile, the head neck flexion angle measurement device of this calibration system was sufficient to detect the following three target angle values more accurately: the maximum values of fore pendulum base angles, the maximum values of aft pendulum base angles, and the maximum values of head neck complex flexion angles. Conclusions The calibration system of ES-2 side impact dummy neck is basically capable of meeting the demands of the existing international rule, the ECE R95. Besides, this neck calibration system is convenient and practical, and its design approaches and manufacturing techniques are likely to find the wider application in the impact biomechanics field.