Abstract:Objective To investigate the effect of different mechanical environment ( in vivo and in vitro) on expression of basic fibroblast growth factor (bFGF) and explore the role of mechanical stimulation in corneal tissue repair after laser assisted in situ keratomileusis (LASIK) surgery. Methods Animal models by LASIK surgery were established to keep the corneas under different mechanical environment. The experimental animals were killed at the first week or the first month after LASIK surgery to obtain the corneas. In addition, the primary corneal fibroblasts were subjected to cyclic mechanical stretch (0.1 Hz; 5%, 10%, 15% stretch; 6 h or 24 h) using Flexcell 4 000 tension system. Expression of bFGF was determined by ELISA method. Results At the first week after LASIK surgery, expression of bFGF was increased significantly in 30% group (residual stroma bed accounting for 30% of the whole cornea), as compared with the control group (P<0.05), and then it was decreased to the normal level in all groups at the first month after LASIK surgery. Analysis on the same surgery method at different time showed that there were significant differences only in 30% group at the first week and month (P<0.05). Cyclic stretch experiment in vitro indicated that bFGF expression in 15% stretch group was significantly increased after 6 h than that in the control group (P<0.05), with a significant decrease after 24 h (P<0.05). Conclusions Mechanical stimulation can regulate bFGF expression of corneal tissues and corneal frbroblasts, and bFGF plays a positive role in the early corneal tissue repair after LASIK surgery.