Abstract:Objective To study the effects of different parameters (thickness, orthodontic displacement, elastic modulus) of Invisalign on canine displacement and periodontal ligament (PDL) stress during mandibular canine intrusion treatment. Methods Forty-eight different Invisalign models were used to simulate canine intrusion treatment by using the finite element method. Results The initial displacement of the canine and stress on canine PDL were proportional to thickness, intrusion displacement, and elastic modulus of Invisalign. The intrusion displacement had the greatest influence on canine displacement. During canine intrusion treatment, the compressive stress on PDL was the most sensitive parameter and changed easily with the change of parameters. Conclusions The increase of Invisalign thickness, intrusion displacement and elastic modulus can increase canine displacement, however, the stress on PDL also increases, with the largest increasing magnitude in compressive stress on PDL. Therefore, to accelerate tooth movement in Invisalign treatment, it is suggested to use the assisted devices or measurements, such as attachment, supplement of bracket-wires treatment, or implant anchorage.