Effect of follower load on facet joint contact force of lumbar spine
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Objective To study the influence of follower load on contact force of facet joints under various postures of lumbar spine. Methods A 3D nonlinear finite element model of lumbar spine (L1-S1) was developed, with consideration of the non-uniform thickness and nonlinear material properties of the cartilage layer in facet joints. The model was then applied with different follower preload (0, 0.5, 0.8, 1.2 kN), under pure moment of 7.5 N?m in different directions (flexion, extension, lateral bending, extension and torsion). The contact forces of facet joints on the two sides of each segment under different loading conditions were compared. The asymmetry influence of follower load on contact force of facet joints was also quantitatively studied. Results The follower preload increased the facet force under flexion-extension and bending (ipsilateral), while decreased the force on the contralateral facet under lateral bending. All the effects of follower load on facet force became weaker with the increase of preload. For torsion loading, the preload had almost no effect on facet force. The greatest asymmetry influence of follower load on facet force was under bending (the ipsilateral side), followed by flexion, bending (contralateral side), extension and torsion. Conclusions The follower load shows obviously different effects on contact force of facet joints with different postures. The asymmetry of facet joints should be fully considered in biomechanical studies of lumbar spine, especially in studies on post-structures of lumbar spine under physiological loads.

    Reference
    Related
    Cited by
Get Citation

DU Cheng-fei, LI Jun-wei, LIU Ying-hai, HUANG Yun-peng. Effect of follower load on facet joint contact force of lumbar spine[J]. Journal of medical biomechanics,2017,32(4):363-368

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 27,2016
  • Revised:November 03,2016
  • Adopted:
  • Online: August 21,2017
  • Published:
Article QR Code