Effects of Femoral Offset on Musculoskeletal Multi-Body Dynamics and Contact Mechanics of Artificial Hip Joint for DDH Patients
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Objective To investigate the biomechanical effects of femoral offset (FO) on total hip arthroplasty (THA) patients with developmental dysplasia of the hip (DDH). Methods Based on the musculoskeletal dynamic software AnyBody and the related data from a female patient with Crowe Ⅳ DDH, the corresponding patient-specific lower extremity musculoskeletal multi-body dynamic model was constructed to analyze both hip joint forces and abductor forces within ±20 mm variation of FOs. The dynamic finite element (FE) model of S-ROM stem with varying offsets was also established. The dynamic load during a whole walking gait cycle calculated by the multi-body musculoskeletal model was applied to this FE models, and the Von Mises stress, contact stress, and stem-sleeve micromotion were then analyzed. Results A variation of ±20 mm offset had small influences on peak forces of hip joints. However, the decrease in FO could lead to an obvious increase in peak abductor force, while the increase in FO could lead to an obvious increase in the maximum Von Mises stress, contact stress, and micromotion of S-ROM prosthesis stem. Conclusions The change in FO had an obvious influence on the abductor forces, the maximum Von Mises stress, the contact pressure and the consequent fretting wear of THA patients with DDH, which should be carefully considered by surgeons.

    Reference
    Related
    Cited by
Get Citation

CHEN Xihui, CHAI Wei, GAO Yongchang, ZHANG Zhifeng, JIN Zhongmin. Effects of Femoral Offset on Musculoskeletal Multi-Body Dynamics and Contact Mechanics of Artificial Hip Joint for DDH Patients[J]. Journal of medical biomechanics,2019,34(3):225-231

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 08,2018
  • Revised:July 04,2018
  • Adopted:
  • Online: June 25,2019
  • Published:
Article QR Code