Effects of storage duration on compressive mechanical properties of rabbit patellar ligament
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Objective To study the effect of storage duration on compressive mechanical properties of rabbit patellar, so as to provide references for in vitro ligament storage.Methods The compressive mechanical properties of rabbit patellar ligament storaged at -20 ℃ at different storage durations (in 36 d) were tested with the universal tensile test machine. The microscopic morphology of collagen fibers was observed under the scanning electron microscopy (SEM). The enthalpy and denaturation temperature of collagen fibers were measured with differential scanning calorimetry (DSC).Results With the increase of storage duration, the compressive stress of the patellar ligament at 40% strain increased from 19 kPa to 112 kPa and then decreased to 57 kPa. SEM observation showed that the cross-linking of collagen fibers was initially strengthened and then weakened. DSC results showed that the enthalpy increased from 59.47 J/g to 67.10 J/g and then decreased to 54.43 J/g. The denaturation temperature increased from 67.62 ℃ to 77.28 ℃ and then decreased to 64.10 ℃.Conclusions When rabbit patellar ligament is stored at -20 ℃, with the increase of storage duration, the compressive stress of rabbit patellar ligament at 40% strain increases at first and then decreases. This change may be due to the variation of cross-linking level of collagen fibers. The stronger the cross-linking of collagen fibers, the stronger the compressive mechanical properties will be.

    Reference
    Related
    Cited by
Get Citation

LIU Lifu, YIN Menghong, QI Zhiming, WANG Peng, WU Chengwei, ZHANG Wei. Effects of storage duration on compressive mechanical properties of rabbit patellar ligament[J]. Journal of medical biomechanics,2022,37(2):225-230

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 17,2021
  • Revised:June 25,2021
  • Adopted:
  • Online: April 27,2022
  • Published:
Article QR Code