Abstract:Objective To study dynamic compression performance of adipose tissues, so as to further reveal the damage mechanism, and provide references for medical treatment.Methods Based on the improved split Hopkinson pressure bar (SHPB) experimental device, the adipose tissue dynamic compression experiment was conducted. The stress-strain curves of adipose tissues at different strain rates were obtained. Then the numerical model of SHPB was established, and the experimental process was simulated and analyzed. The numerical simulation for penetration process of 32 mm diameter rubber non-lethal projectile into the simulated target in human abdomen was carried out.Results Adipose tissues had a noticeable strain rate effect. The stress-strain curves at two high strain rates were approximately straight lines. The slope was similar, and the elastic modulus was 3.25 MPa, which was about 6 times of that under a quasi-static state. The simulation curves of fat SHPB were consistent with the experimental curves, which verified correctness of the constitutive model. In the process of non-lethal projectile penetrating human abdomen, an annular convex area similar to water wave appeared on skin surface, and the fat layer absorbed about 67% of the impact kinetic energy.Conclusions The experimental data of adipose tissues are very accurate. Numerical simulation can reproduce the penetration process well, and provide references for studying the damaging effect of non-lethal weapons on human body.