Abstract:Objective By establishing finite element model of the proximal femur, the injury risk of proximal femur under the conditions of self-selected speed rise and rapid rise at initial stage of standing during sit-to-stand (STS) transition was analyzed.Methods CT images of proximal femur in the elderly were processed with three-dimensional (3D) reconstruction and reverse modeling, so as to complete the solid model. The finite element model was established through material assignment and meshing. Based on the finite element analysis software ANSYS, the boundary conditions were constrained, and 1.733 kN and 1.837 kN loads were applied to obtain stress distributions and strain of proximal femur at different rising speeds. Results The stress concentrated at medial edge of the greater trochanter and the femoral neck. The peak stress and micro-strain appeared on inner edge of the larger rotor. The peak stress was 30.16 MPa and peak micro-strain was 2 553.5 at rapid rising speed. The peak stress and peak micro-strain at self-selected rising speed were 28.69 MPa and 2 430.4, respectively, which were relatively lower. For stress concentration area of femoral neck, the stress ranges at rapid rising speed and self-selected rising speed were 13.42-23.46 MPa and 12.76-25.51 MPa, respectively.Conclusions Frequent STS transition may increase the risk of fatigue fractures for proximal femur in the elderly. Rapid STS transition has a higher injury risk for proximal femur than STS transition at self-selected speed.