Abstract:Objective To investigate the influence of implant location and axial direction on stress distributions at the implant bone interface of maxillary central incisors with different alveolar fossa morphology by immediate implantation under immediate weight-bearing. Methods With reference to dental cone beam computed tomography (CBCT) image data from a healthy adult, the three-dimensional ( 3D) finite element models of maxillary central incisors with three types of alveolar fossa ( buccal, mediate, and palatal type) by immediate implatation under immediate weight-bearing were established. Different implant sites ( apical site, palatal / labial site) and axial directions (long axis of the tooth, long axis of the alveolar bone) were simulated. The established models were subjected to 100 N force at different angles (0°, 30°, 45°, 60°, 90°). The stresses in the alveolar bone around the implant were analyzed by the ANSYS software. Results Twelve 3D finite element models of maxillary central incisors with different alveolar fossa morphology by immediate implantation under immediate weight-bearing were successfully established. When alveolar fossa with buccal and mediate shape was applied with immediate implantation under immediate weight-bearing, it was easier to obtain good biomechanical properties of the implant-bone interface when implants were placed at palatal site along long axis of the alveolar bone. When alveolar fossa with palatal shape was applied with immediate implantation under immediate weightbearing, the equivalent stresses on peri-implant alveolar bone were much smaller than those on apical site, regardless of whether the implant was placed along long axis of the tooth or the long axis of the alveolar bone. Conclusions Different alveolar fossa morphology, implant location and axial direction will affect characteristics of implant-bone interface of maxillary central incisors with immediate implantation under immediate weight-bearing. In clinical practice, surgical planning on different axial direction and location of implantation should be developed for alveolar fossa with different morphology.