文章编号:1004-7220(2022)05-0925-08

典型胸主动脉裸支架的力学性能

冒鹏志1, 沈景凤1, 葛书晨2

(1.上海理工大学 机械工程学院,上海 200093; 2.上海创心医学科技有限公司,上海 201203)

摘要:目的 研究两种胸主动脉镍钛裸支架(Ze、Fa支架)的力学性能,为裸支架的设计和临床选择提供理论依据。 方法 建立两种裸支架的有限元模型和实物模型。分别完成两种裸支架弯曲、径向力和模拟使用的有限元分析, 并进行对应的实物模型测试。通过实测结果验证有限元分析的准确性,预测支架植入后血管的应力和应变。 结果 有限元分析表明,Ze、Fa支架弯曲90°时截面扁平率分别为3.83%和18.83%(实测为8.57%和14.27%),弯 曲180°时截面扁平率分别为12.02%和23.72%(实测为14.37%和23.35%)。Ze、Fa支架在心脏收缩期最大径向 力分别为33、429 N/m(实测为31、433 N/m),在心脏舒张期最大径向力分别为27、146 N/m(实测为29、179 N/m)。 Ze、Fa支架在植入后对血管造成的最大应力分别为4、18 kPa,最大应变分别为4.17%和13.92%,最大直径扩张率 分别为1.03%和8.98%。有限元分析和实测结果无显著性差异(P>0.05)。结论 Ze、Fa支架植入后对健康血管 造成的最大应力、应变在许可范围内。Ze支架的弯曲性能较优,适合被植入弯曲血管。Ze支架径向力较弱,适合 被作为仅提供内膜支撑的Petticoat支架。较强的径向力有助于加强 Fa支架适合被作为限制性裸支架。

DOI: 10. 16156/j. 1004-7220. 2022. 05. 024

Mechanical Properties of Typical Thoracic Aortic Bare Stents

MAO Pengzhi¹, SHEN Jingfeng¹, GE Shuchen²

(1. College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. Shanghai Innocardiac Medical Technology Co., Ltd., Shanghai 201203, China)

Abstract: Objective To study mechanical properties of two thoracic aortic bare stents (stent Ze and stent Fa), so as to provide the theoretical basis for the design and clinical selection of bare stents. Methods The finite element models and experimental models of two bare stents were constructed. Finite element analysis (FEA) on bending, radial force, simulated use of the two models were conducted. The accuracy of FEA was verified by experiment result and the vessel stress and strain after stent implantation were predicted. Results The FEA indicated that section flattening rates of stent Ze and stent Fa were 3.83% and 18.83% at 90° bending (8.57% and 14.27% in test results) and 12.02% and 23.72% at 180° bending (14.37% and 23.35% in experiment results). The maximal radial forces of stent Ze and stent Fa were 33 and 429 N/m in systolic phase (31 and 433 N/m in experiment results), and 27 and 146 N/m in diastolic phase (29 and 179 N/m in experiment results). The maximal stresses, strains, and diameter expansion rates of vessels implantation of stent Ze and

stent Fa were 4 and 18 kPa, 4.17% and 13.92%, and 1.03% and 8.98%, respectively. There was no significant difference between the FEA and experiment results (P > 0.05). Conclusions After implantation of stent Ze and stent Fa, the maximum stress and strain of vessels were within the allowable range. Stent Ze is suitable for curved vessel implantation with a better bending performance. Meanwhile, stent Ze has a lower radial force, and it can provide intimal support as the Petticoat stent with a lower radial force. Stent Fa has a higher radial force, and it can enhance its stability in vessels and reduce the risk of spinal ischemia, thus being suitable for restrictive bare stents.

Key words: thoracic aorta bare stents; mechanical properties; aortic dissection; finite element analysis

胸主动脉血管从心脏发出,依次被分为升主动 脉、主动脉弓和降主动脉。血管由内膜、中膜和外 膜组成。主动脉夹层(aortic dissection, AD)是一种 常见的高死亡率血管疾病,中国平均每年新增约 1.5 万名 AD 患者^[1]。病变血管的内膜和中膜撕 裂、分离,血流从内膜破口灌注,形成夹层。当内膜 破口位于降主动脉并向下累及时,称之为 Stanford B 型夹层^[1]。胸主动脉腔内修复术(thoracic endovascular aortic repair, TEVAR)是复杂急性 Stanford B 型夹层的首选治疗方法,它通过在夹层血 管内植入覆膜支架,封闭内膜破口,达到重塑血管 的目的^[2]。主动脉远端再撕裂(distal stent graftinduced new entre, dSINE)是指覆膜支架封闭降主 动脉近端破口,但夹层沿着血管继续扩张,甚至产 生远端新破口。近 35% AD 患者在 TEVAR 术后发 生 dSINE,且死亡率高达 25%^[3]。限制性裸支架 (restrictive bare stent, RBS)和 Petticoat 技术作为 dSINE 的预防措施被提出。RBS 技术是在植入覆膜 支架前,在降主动脉远端放置裸支架,通过裸支架 限制覆膜支架远端释放尺寸,防止覆膜支架过度膨 胀,减少内膜损伤;Petticoat 技术是在植入覆膜支架 后,在降主动脉远端部署裸支架,预封闭远端血管 内膜,防止 dSINE^[4-5]。

RBS 和 Petticoat 技术均有助于预防 dSINE,但 临床使用的裸支架存在一定的产品缺陷。Cansud 等^[6]研究发现,TEVAR 联合 Petticoat 术后,裸支架 发生移位、断裂、脱落的故障率高达 9.2%。有学者 认为,当今标准缺少对胸主动脉裸支架力学性能和 临床选择标准的规定^[7.8]。Demanget 等^[9]对覆膜支 架的 1 个支架环进行压握分析,但该研究未考虑连 接线等对支架环的影响。

本文考虑连接线对裸支架的影响,通过有限元

分析两种裸支架弯曲、径向力和模拟使用,并进行 对应的实物模型测试。通过仿真和实测结果的差 异性对比,验证有限元前处理设置的合理性和仿真 结果的真实性,预测临床手术中裸支架和血管的应 力、应变,评估血管的受损伤程度,为裸支架的设计 和临床选择提供理论依据。

1 研究对象

1.1 两种裸支架模型和血管模型

目前专为预防 dSINE 的产品有 Zenith Dissection Endovascular System (Cook Medica 公司, 美国)和 Fabulous 胸主动脉支架系统(杭州唯强医 疗科技有限公司)。本文参考 Zenith 和 Fabulous 胸 主动脉裸支架,建立两种支架模型,分别命名为 Ze 支架和 Fa 支架。两种裸支架的结构和尺寸参数详 见图 1。本文使用 ABAQUS/EXPLICIT 作为有限元 分析求解器,经过网格独立性检验,最终使用梁单 元对两种支架划分同密度网格(Ze、Fa 支架网格数 量分别为 11 993 和 22 857),实体单元划分血管网 格(内、中、外膜网格数量分别为 8 500、6 300 和 7 300)。

临床研究表明,为确保支架可以稳固于主动脉 中,支架的外径应比目标血管内径大15%^[1]。因 此,本文设定血管3D模型的内径为26 mm。依据 人体主动脉尺寸设定血管3D模型的内中外膜厚度 分别为0.48、1.18、0.93 mm^[10]。根据裸支架总长 度假定血管3D模型长200 mm。

1.2 材料参数

1.2.1 裸支架 有限元分析中,NiTi的材料参数由 实物模型 NiTi 丝的拉伸测试测定,通过 Auricchio 等^[11]提出的理论模型模拟 NiTi 材料的超弹性和各 向同性行为,具体材料特性详见表 1^[12]。

图 1 两种裸支架的结构和尺寸参数

Fig. 1 Structure and size parameters of two bare stents (a) Stent Ze, (b) Stent Fa

表1 NiTi、PET 和血管材料特性

Tab. 1 Material properties of NiTi, PET and blood vessel

材料	参数	数值	材料	参数	数值
NiTi	密度, $\rho_{\rm N}/(g\cdot {\rm cm}^{-3})$	6.48	PET	密度, $\rho_{\rm P}/(g\cdot {\rm cm}^{-3})$	1.38
	奧氏体弹性模量, E_A /GPa	78.333		弹性模量, E _P /MPa	714
	奥氏体泊松比, ν_A	0.3		泊松比, $\nu_{\rm P}$	0.2
	马氏体弹性模量, $E_{\rm M}$ /GPa	32.253	血管	密度, $\rho_{\rm B}/(g\cdot {\rm cm}^{-3})$	1.06
	马氏体泊松比, ν_{M}	0.3		内膜剪切模量, μ_{01}/kPa	118.604
	转化应变, ε^{L}	0.05		中膜剪切模量, μ_{02}/kPa	93. 572
	加载转化开始应力, $\sigma^{ m S}_{ m L}$ /MPa	632		外膜剪切模量, μ_{03}/kPa	51.554
	加载转化结束应力, $\sigma_{ m L}^{ m E}$ /MPa	700		泊松比, $\nu_{\rm B}$	0.49
	卸载转化开始应力, $\sigma^{ m S}_{ m U}$ /MPa	400			
	卸载转化结束应力, $\sigma_{\mathrm{U}}^{\mathrm{E}}$ /MPa	310			
			11		

37

1.2.2 血管 有限元分析中,血管壁3层膜均是具 有非线性特性的超弹性材料,基于应变能密度用于 超弹性变性的 Neo-Hookean 本构理论可以较好地对 超弹性材料描述,应变能方程为^[13]:

测试温度, T_0 /℃

 $U = C_{10}(I_1 - 3) + (J^{el} - 1)^2/D_1$ (1) 式中:U为单位参考体积应变能; I_1 是第1个应变不 变量; J^{el} 是总体积比; C_{10} 和 D_1 是与血管初始剪切 模量 μ_0 和泊松比 ν_B 相关的参数,关系方程为:

$$C_{10} = \mu_0 / 2 \tag{2}$$

 $D_1 = (3 - 6\nu_{\rm B})/(\nu_{\rm B}\mu_0 + \mu_0)$ (3)

参考 Holzapfel 等^[14]获得人体健康主动脉各层膜组 织的材料参数,代入式(2)和(3)计算 C_{10} 和 D_{10} 实

测中,血管介入训练模型(PLXG1009,上海璞临医 疗科技有限公司)通过 3D 打印具有高弹特性的高 透明软硅胶还原人体主动脉血管形态和弹性特征。

2 研究方法

2.1 弯曲测试

裸支架在弯曲时会产生截面扁平现象,扁平截 面会阻碍血液流动,过度压迫该区域血管^[15]。弯曲 截面的扁平化会导致支架两端尺寸过度扩张,产成 "狗骨头"(dog bone)效应,损伤支架端部处的血管 内壁^[16]。因此,研究和评价裸支架的弯曲性能至关 重要。 如图 2 所示,有限元分析中,设定裸支架两端 顶点分别由点 RP₁和 RP₂控制;绕 Z 轴对 RP₁和 RP₂施加数值相等、方向相反的转角;锁定点 RP₁ 和 RP₂的其余两个转动自由度,保持裸支架在 XY 平面内^[17]。实测中,水平放置裸支架,使用杆件固 定端部正对的两个顶点,控制杆件中点达到与有限 元分析相同的弯曲效果。

图 2 裸支架弯曲 90°(虚线)和 180°(实线)时示意图 Fig. 2 Diagram of bare stents at 90° bending (dashed line) and 180° bending (solid line)

2.2 径向力测试

在裸支架植入前,先将其压握进直径 6 mm 的 鞘管,送至目标血管后撤除鞘管,支架回弹并与血 管内壁接触,依靠径向力锚固于血管内。径向力过 小,裸支架易移位、坍塌;径向力过大,裸支架回弹 后易损伤内膜。

有限元分析中,使用圆筒壳模型模拟鞘管,对 壳各节点施加径向位移,以模拟裸支架被压握释放 的过程。锁定裸支架一端若干顶点的轴向和周向 位移,防止其移动;设置壳与裸支架之间为无摩擦 的硬接触,裸支架存在摩擦系数为0.2的自接触;在 圆周方向上均匀对壳施加径向位移,使裸支架收缩 至直径6 mm 后再回弹至初始形态。实测中,使用 径向力测试仪(Blockwise 公司,美国)对裸支架进行 测试。由于测试仪内部不可视,无法观测到裸支架 被压握后的形态,故将裸支架压握进直径6 mm 的 透明管中,观察其压握形态。

2.3 弯曲模拟使用测试

模拟裸支架在血管内的释放,预测支架植入后血 管的应力、应变,可以评判两种裸支架释放形态的优 劣和径向力大小的合理性。对比仿真和实测中支架 的释放形态,可以判断有限元边界条件和约束载荷是 否与实际相符,判断血管模型仿真的应力应变预测值 是否真实,评估释放后血管壁的受损伤程度。

有限元分析中,锁定裸支架和血管一端若干顶 点的轴向和周向位移,防止二者移动;设置裸支架 与血管为摩擦接触,摩擦因数为0.2;设置壳与血管 无接触;设置壳与裸支架之间为无摩擦的硬接触, 裸支架存在摩擦因数为0.2的自接触;在圆周方向 上均匀对壳施加径向位移,使裸支架收缩至直径 6 mm 后回弹并支撑在血管内。实测中,依据临床 手术操作,使用输送系统在血管介入训练模型中完 成裸支架的模拟使用测试。

3 测试结果

3.1 弯曲测试

基于临床研究,现阶段通常采用 90°和 180°作 为支架弯曲测试标准角度,并使用截面扁平率 *L*_{R_a}。 评价血管支架在弯曲 *a*°时的截面扁平程度^[9],计算 公式为:

 $L_{R_{a^o}} = (1 - L_{l_{a^o}}/OD) \times 100\%$ (4) 式中: L_{0-a^o} 为裸支架弯曲 a^o 时弯曲截面的最小外 径;OD 为裸支架的初始外径。定义端部扩张系数 $e_{1_{a^o}} 和 e_{2_{a^o}}$,以描述裸支架弯曲 a^o 时两端尺寸扩张 的程度,合理评价"狗骨头"效应的强弱,计算公 式为:

$$e_{1 \alpha^{\circ}} = L_{1 \alpha^{\circ}} / \text{OD}$$
 (5)

$$e_{2 \alpha^{\circ}} = L_{2 \alpha^{\circ}} / \text{OD} \tag{6}$$

式中: e_{1_a} 。和 e_{2_a} 。分别为裸支架在弯曲 a。时两端端 部的扩张系数; L_{1_a} 。和 L_{2_a} 。分别为裸支架在弯曲 a。 时两端端部的最大外径。截面扁平率和端部扩张 系数测试结果详见表 2。

如图 3 所示,有限元分析中,Ze 支架弯曲 90°时 形态顺滑,而弯曲 180°时小弯侧支架环上的连接线 结点在杆上滑动,结点松散明显,整体裸支架无对 顶设计的一端出现明显的短缩现象。Fa 支架弯曲 90°时大弯侧有尖锐的突起,小弯侧相连的支架环出 现明显的堆叠现象,Fa 支架 $L_{R,90°}$ 是 Ze 支架的 2.24 倍。Fa 支架弯曲 180°时小弯侧支架环上的节点未 明显滑动,但相连支架环的堆叠现象较弯曲 90°时 明显,Fa 支架 $L_{R_{-180°}}$ 是 Ze 支架的 1.97 倍。配对 t检验结果表明,有限元分析与实测结果无显著性 差异(P>0.05)。

表 2 两种裸支架弯曲 90°和 180°时截面扁平率和端部扩张系数

Section flattening rates and end expansion rates of two bare stents at 90° and 180° bending Tab. 2

矣 粉	Ze		Fa		- \$ >₩r	Ze		Fa	
参奴	有限元	实测	有限元	实测	参奴 -	有限元	实测	有限元	实测
$L_{0_{-90^{\circ}}}$ /mm	28.85	27.43	24.35	25.72	$L_{0_{-180^{\circ}}}$ /mm	26.39	25.68	22.88	23.03
$L_{ m R_90^\circ}$ /%	3.83	8.57	18.83	14.27	$L_{ m R_{-180^{\circ}}}$ /%	12.02	14.37	23.72	23.35
$L_{1_{-90^{\circ}}}/\mathrm{mm}$	29.95	30.30	30.32	30. 20	$L_{1_{-}180^{\circ}}/\mathrm{mm}$	29.89	30.30	36.72	36.35
$L_{2_{-90^{\circ}}}/\mathrm{mm}$	29.94	30.20	30. 51	30. 10	$L_{2_{-180^{\circ}}}/\mathrm{mm}$	30.07	30. 30	37.96	34.89
$e_{1_{90^{\circ}}}$	0. 998	1.010	1.016	1.006	$e_{1_180^{\circ}}$	0.996	1.010	1.224	1.212
$e_{2_{90^{\circ}}}$	0. 998	1.006	1.017	1.003	$e_{2_{-180^{\circ}}}$	1.002	1.010	1.265	1.163

Fig. 3 Finite element analysis and experiments of two bare stents at 90° and 180° bending (a) Stent Ze, (b) Stent Fa

3.2 径向力测试

图 4

如图 4 所示,有限元分析中,当裸支架被压握 至鞘管尺寸后,Ze、Fa 支架的支架环均产生扭转、叠 杆现象。Ze 支架的连接线被杂乱挤压在支架环之 间,支架环最大应变为2.2%,最大应变点位于支架 环顶点处。Fa 支架连接线较整齐,支架环的最大应 变为9.7%,最大应变点位于支架环顶点处。实测 中,两种裸支架的压握形态与有限元分析结果相

支架的径向力有两种不同的表征方式,包括抵 抗压握时的径向阻力(radial resistance force, RRF) 和释放扩张时的慢性向外力(chronic outside force, COF)。支架径向力 $F_{\rm B}$ 的计算公式为^[18]:

$$F_{\rm R} = F/L \tag{7}$$

式中:F_B为裸支架的径向力;F 为整体支架的测量 力:L为支架的轴向长度。径向力测试结果详见

图 5 和表 3。配对 t 检验结果表明,两种裸支架 F_R的有限元分析与实物测试结果无显著性差异(P>0.05)。

图 5 两种裸支架的径向力曲线

Fig. 5 Radial force curves of two types of bare stents

(a) Stent Ze, (b) Stent Fa

3.3 模拟使用测试

有限元分析表明,Ze 支架植入后,连接线松弛 并向内突起,目标血管外径扩张0.32 mm,扩张幅度

Fig. 6 Results of simulated use for two bare stents

4 讨论

弯曲时,Ze 支架形态顺滑,截面扁平率小,端部 直径扩张系数小,表明Ze 支架的弯曲性能较优,适 于被植入弯曲血管中。与Ze 支架相比,Fa 支架大 弯侧的尖锐突起明显,小弯侧支架环更易堆叠,这 会导致其与血管内壁的贴合性差,易内折,同时堆 叠的支架环会阻碍管腔内血液的流动,产生微小血 栓。Fa 支架 e₁₁₈₀和 e₂₁₈₀。均远大于1,说明弯曲 表 3 两种裸支架在鞘管和血管尺寸时径向力

Tab. 3 Radial force of two bare stents at the size of sheath and vessels 单位:N/m

险码	目标尺寸/	Z	e	Fa	
別权	mm	有限元	实测	有限元	实测
RRF	26	33	31	429	433
	6	152	173	765	892
COF	26	27	29	146	179

为1.03%;血管的最大应力、应变分别为4 kPa、 4.17%,位于与对顶结构接触的内膜上。Fa 支架植 入后,连接线与血管内壁紧密贴合,目标血管外径 扩张2.80 mm,扩张幅度为8.98%;血管的最大应 力、应变分别为18 kPa、13.92%,位于与支架环接触 的内膜上。实测中,支架的释放通过后撤鞘管完 成,相较于有限元分析结果,Ze 支架连接线的松弛 内突程度小,其他释放形态与有限元分析结果吻合 (见图6)。

(a) Stent Ze, (b) Stent Fa

180°时 Fa 支架两端端部扩张显著,"狗骨头"效应 明显。Mwipatayi 等^[18]研究表明,"狗骨头"效应会 损伤支架端部处的内膜,导致内膜增生并引发血管 腔内狭窄。

在压握形态方面,被压握至鞘管尺寸后,两种 裸支架的连接线均会恶化支架的压握形态,增加支 架环压握后的应变。Ze 支架杂乱的连接线可能会 阻碍其正常回弹。Hofferberth 等^[19]报道了1名患 者在接受Ze 型裸支架植入时,支架卡在降主动脉 远端并需要开放手术中转治疗的病例,这可能是杂 乱挤压在支架环间的柔性 PET 线意外缠绕束缚住 支架环所致。Ze 支架被压握后,PET 线结点易松 散,这会导致植入后支架在血管长期搏动中发生解 体。Lombardi 等^[20]报道了 2 例由于连接线断裂、节 点松散,患者需要二次干预的 Ze 型裸支架环分离 的病例。同时,PET 线贴壁性差会干扰后续鞘管的 输送,而 Fa 支架的 NiTi 绳连接线经过热处理定型 后,稳定性强、结点牢固。研究表明,仅对 1 个支架 环进行压握时,支架环形态良好、支架杆分布均 匀^[9,16]。本文发现,由于鞘管内连接线的挤压,两种 支架环均呈现出扭曲、叠杆的压握形态,Fa 支架的 支架环最大应变已经超出 NiTi 材料 8%的屈服应 变,说明 Fa 支架环在被压握后会发生塑性形变,被 释放后 Fa 支架无法完全恢复到初始尺寸。

裸支架在血管腔内回弹后,依靠 COF 锚固于血 管壁上,当心脏搏动时,主动脉血管壁会随之产生 收缩与舒张,裸支架对血管壁的反作用力在 RRF 和 COF 两种表征之间交替。Canaud 等^[6]随访研究表 明,有 5 名患者在接受 Ze 型裸支架植入 6 个月后, 由于径向力较弱,支架发生塌陷。本文发现,Fa 支 架的 RRF 和 COF 分别是 Ze 支架的 13.0~13.9 倍 和 5.4~6.1 倍。Ze 支架的径向力较弱,适合被作 为仅提供内膜支撑的 Petticoat 支架^[3],但过小的 COF 会导致其在长期的血管搏动中发生移位、坍 塌^[21]。Fa 支架的径向力较强,这有助于加强其在 血管内的稳定性,降低脊髓缺血风险,故 Fa 支架适 合被作为限制性裸支架^[3]。

评估裸支架径向力是否合理应考虑血管所能 承受的能力。Freeman 等^[22]研究认为,健康主动脉 血管壁的安全应力小于 0.6 MPa,安全应变小于 15%。本文结果表明,两种裸支架对健康血管壁造 成的应力、应变均处于安全范围内,但接受 Fa 支架 植入的血管直径扩张的幅度近 9%,这会加剧内膜 增生^[18]。不同患者的内膜增生程度和血管壁安全 应力、应变不同^[23]。例如:马凡综合征患者的主动 脉壁具有易碎性,它的安全应力应变远小于健康血 管^[24]。Fa 支架对健康血管壁造成的应变已临近安 全值,故 Fa 支架有可能对病变的血管壁造成损伤。

有限元仿真和实测结果的差异性较小,说明有 限元前处理设置合理,临床手术中裸支架和血管应 力应变预测值的可信度高。但两者部分结果存在 差异,影响因素分析如下:

(1)有限元仿真中的影响因素。仿真使用理想化的模型、边界条件和约束载荷,采用本构模型近似模拟材料的超弹性行为,故仿真与实测结果不完全一致。

(2) 实测中的影响因素。弯曲实测中,无法消除由 XY 平面、测试台平面与裸支架水平横切面三 者不绝对平行而带来的误差。径向力实测中,裸支 架表面粗糙度不均、压握模组的自身摩擦等均会影 响结果。模拟使用实测中,鞘管的后撤拉力会影响 裸支架的释放形态,结果表明,后撤拉力仅对 Ze 支 架柔性连接线存在较大影响。另外,支架使用次 数、实测环境、数据采集、数据处理等,都会影响实 测结果的精确性。

5 结论

本文完成了两种裸支架弯曲、径向力和模拟使 用的有限元分析,同时进行对应的实物模型测试, 并结合现有临床报道,对比分析两种裸支架结构的 优劣。本文研究结果表明:

(1)两种裸支架释放后对健康血管壁造成的 应力、应变均处于安全范围之内,但 Fa 支架对健康 血管壁造成的应变已临近安全值,Fa 支架有可能对 病变的血管壁造成损伤。

(2) Ze 支架适于弯曲形血管 dSINE 的预防与 治疗,适合被作为仅提供内膜支撑的 Petticoat 支架, 因为其弯曲性能较优,径向力较弱。但较弱的径向 力可能会导致 Ze 支架在长期的血管搏动中发生移 位、坍塌。Ze 支架的 PET 连接线贴壁性差、稳定性 差、节点易松散,可能会阻碍二次手术干预。

(3) Fa 支架适合被作为限制性裸支架,因为其 径向力较强,这有助于加强其在血管内的稳定性, 降低脊髓缺血风险,但也带来了更高的主动脉壁损 伤风险。弯曲时 Fa 支架会产生显著的"狗骨头"效 应,这会干涉主动脉腔内血液流动。Fa 支架被压握 后会发生塑性形变,无法完全回弹至初始尺寸。

本文分析方法与结果可以给胸主动脉裸支架 的设计和临床选择提供理论依据。后续本研究将 考虑血液流体动力学对植入裸支架的影响,以提高 有限元分析的准确性。

参考文献:

- [1] 主动脉夹层诊断与治疗规范中国专家共识 [J]. 中华胸心 血管外科杂志, 2017, 33(11): 641-654.
- [2] RIAMBAU V, BÖCKLER D, BRUNKWALL J, et al. Editor's choice-management of descending thoracic aorta diseases: Clinical practice guidelines of the European Society for Vascular Surgery (ESVS) [J]. Eur J Vasc Endovasc Surg, 2017, 53(1): 4-52.
- ZHA B, XU G, ZHU H, *et al.* Endovascular repair of type B aortic dissection with the restrictive bare stent technique: morphologic changes, technique details, and outcomes [J]. Ther Clin Risk Manag, 2018, 67(1): 1993-2002.
- [4] ZHAO Y, YIN H, CHEN Y, et al. Restrictive bare stent prevents distal stent graft-induced new entry in endovascular repair of type B aortic dissection [J]. J Vasc Surg, 2018, 67(1): 93-103.
- [5] ZENG Z, ZHAO Y, WU M, et al. Endovascular strategies for post-dissection aortic aneurysm (PDAA) [J]. J Cardiothorac Surg, 2020, 15(1); 1-10.
- [6] CANAUD L, FAURE EM, OZDEMIR BA, et al. Systematic review of outcomes of combined proximal stentgrafting with distal bare stenting for management of aortic dissection [J]. Ann Cardiothorac Surg, 2014, 3(3): 223-233.
- [7] DEMANGET N, LATIL P, ORGÉAS L, et al. Severe bending of two aortic stent-grafts: An experimental and numerical mechanical analysis [J]. Ann Biomed Eng, 2012, 40(12): 2674-2686.
- [8] SANTOS ÁD, VALDIVIA AR, ALGUACIL SG, et al. Symptomatic aortic bare-metal stent fracture after PETTICOAT technique for complicated type B aortic dissection [J]. Ann Vasc Surg, 2019, 59: 311. e1-311. e4.
- [9] DEMANGET N, DUPREY A, BADEL P, et al. Finite element analysis of the mechanical performances of 8 marketed aortic stent-grafts [J]. J Endovasc Ther, 2013, 20(4): 523-535.
- [10] WEISBECKER H, PIERCE D M, REGITNIG P, et al. Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with nonatherosclerotic intimal thickening [J]. J Mech Behav Biomed Mater, 2012, 12: 93-106.
- [11] AURICCHIO F, TAYLOR RL. Shape-memory alloys: Modeling and numerical simulations of the finite-strain superelastic behavior [J]. Comput Meth Biomech Biomed Eng, 1997, 143: 175-194.
- [12] GOMIDE LC, CAMPOS DO, ARAÚJO CA, et al. Mechanical study of the properties of sutures used in orthopedics surgeries [J]. Rev Bras Ortop, 2019, 54(3): 247-252.
- [13] 谷雪莲, 胡方遒, 于凯, 等. 两种覆膜支架的生物力学对比

分析 [J]. 医用生物力学, 2015, 30(5): 410-415.

GU XL, HU FQ, YU K, *et al.* Biomechanical comparison for two types of nitinol stent-grafts [J]. J Med Biomech, 2015, 30(5): 410-415.

- [14] HOLZAPFEL GA. Determination of material models for arterial walls from uniaxial extension tests and histological structure [J]. J Theor Biol, 2006, 238(2): 290-302.
- [15] MCKENNA CG, VAUGHAN TJ. An experimental evaluation of the mechanics of bare and polymer-covered self-expanding wire braided stents [J]. J Mech Behav Biomed Mater, 2020, 103: 103549.
- [16] ZHOU X, YANG F, GONG X, et al. Development of new endovascular stent-graft system for type B thoracic aortic dissection with finite element analysis and experimental verification [J]. J Mater Sci Technol, 2019, 35(11): 2682-2692.
- [17] 赵艺文, 闫士举, 司逸, 等. 几何参数对 Z 型覆膜支架柔顺 性的影响 [J]. 医用生物力学, 2019, 34(1): 7-13.
 ZHAO YW, YAN SJ, SI Y, *et al.* Effects of different geometric parameters on flexibility of Z-shaped stent-grafts [J]. J Med Biomech, 2019, 34(1): 7-13.
- [18] MWIPATAYI BP, THOMAS S, WONG J, et al. A comparison of covered vs bare expandable stents for the treatment of aortoiliac occlusive disease [J]. J Vasc Surg, 2011, 54(6): 1561-1570.
- [19] HOFFERBERTH SC, FOLEY PT, NEWCOMB AE, et al. Combined proximal endografting with distal bare-metal stenting for management of aortic dissection [J]. Ann Vasc Surg, 2012, 93(1): 95-102.
- [20] LOMBARDI JV, VAMBRIA RP, NIENABER RP, et al. Prospective multicenter clinical trial (STABLE) on the endovascular treatment of complicated type B aortic dissection using a composite device design [J]. J Vasc Surg, 2012, 55(3): 629-640.
- [21] ATKINS MD, MARROCCO CJ, BOHANNON WT, et al. Stent-graft repair for blunt traumatic aortic injury as the new standard of care: Is there evidence? [J]. J Endovasc Ther, 2009, 16(suppl 1): 53-62.
- [22] FREEMAN JW, SNOWHILL PB, NOSHER JL. A link between stent radial forces and vascular wall remodeling: the discovery of an optimal stent radial force for minimal vessel restenosis [J]. Connect Tissue Res, 2010, 51(4): 314-326.
- [23] SULTAN I, DUFENDACH K, KILIC A, et al. Bare metal stent use in type B aortic dissection may offer positive remodeling for the distal aorta [J]. Ann Vasc Surg, 2018, 106(5): 1364-1370.
- [24] UCHIDA T, KOBAYASHI K, NAKAI S, et al. Bare stent removal in open thoraco-abdominal aortic repair after endovascular treatment with the PETTICOAT technique [J]. Interact Cardiovasc Thorac Surg, 2020, 31(2): 271-273.